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Abstract

I propose a general framework with which to analyze the optimal punishment
as deterrence in response to crime. Each criminal act, detected with some prob-
ability, generates a random piece of evidence and a consequent probability of
guilt for each citizen. I consider a utilitarian planner with no artificial moral
constraints. In particular, I assume no upper bound on punishment—such a
bound can only rise endogenously from the utilitarian objective. Punishment is
pure, i.e., costless. If citizens are expected utility maximizers, a repugnant con-
clusion is reached—it is optimal to punish only with the realization of the most
incriminating evidence. Allowing for more general behavior yields a weaker
but more satisfactory result—optimal punishment is always non-decreasing in
the quality of evidence.

1 Introduction

A crime has been committed. How should the government respond? There are
several types of responses to crime. Punishment as deterrence uses punishment to
deter potential offenders from committing crimes. Punishment as retribution seeks
to punish those guilty of crimes because it is “intrinsically good” to do so. Inca-
pacitation seeks to temporarily prevent offenders from committing further crimes.
Rehabilitation seeks to reduce the future crime rate of offenders. Reparations seek
to compensate victims for the harm caused by the offender. In practice, a particular
response may fall into several of these categories. For example, a prison sentence
might simultaneously serve as punishment as deterrence, punishment as retribution,
incapacitation, and rehabilitation.
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In this paper, I consider the response of punishment as deterrence alone. In particu-
lar, I consider a government that can freely inflict pure “pain” or “disutility”, which
potentially deters crime, but has no other social benefits (including incapacitation
effects, rehabilitation effects, or direct benefits from the punishment). There are a
few ways we can think about this. First, we may consider the use of electric shocks of
various intensities and durations. These cause pure disutility with no social benefits.
Second, we may consider the use of hard, but fruitless, labor—for example, digging a
hole and filling it in again. Third, we may consider this abstractly as the “disutility”
component of a richer sentence, like prison, that includes other effects.

To choose an optimal response to crime, the government must decide on its objec-
tive. I consider a utilitarian government—one who cares only about maximizing
the unweighted sum of its citizens’ utility. Would such a government ever find it
optimal to inflict pure disutility upon its citizens in order to deter socially detri-
mental behavior (crime)? If so, what can we say about the structure of optimal
punishment? I construct a simple model of crime and punishment in order to ex-
plore these questions. A crime is committed. Evidence is left at the crime scene
according to an individual-specific distribution. The government detects the crime
with some probability and, if detected, observes the evidence. This gives rise to a
posterior probability of guilt for each individual. The government’s choice variable
is a punishment plan—a mapping from evidence to a punishment for each individ-
ual. Individual crime rates are determined by the distribution of punishment they
will face upon committing the crime (a combination of their evidence distribution
and the punishment plan).

Since the seminal work of Becker (1968), economists and legal scholars have analyzed
several models of optimal punishment. In this literature, utilitarian governments are
(surprisingly) rare. For example, it is common to exclude from welfare the benefits
to the offender of committing the crime (e.g., Stigler (1970)). It is also common to
consider the disutility of the innocent as worse than the disutility of the guilty (e.g.,
Siegel and Strulovici (2019, 2021)). Finally, it is almost ubiquitous to assume an
upper bound on punishment (e.g., Becker (1968); Stigler (1970); Siegel and Strulovici
(2019, 2021)).

One might view an upper bound on punishment as a physical or technological con-
straint (it is physically impossible to inflict more disutility than some amount).
However, it appears that such bounds are more often intended to reflect moral con-
straints. Indeed, maximal punishment is often considered to be life-in-prison or
execution, but clearly there exist feasible punishments that an offender would prefer
less than these. Moreover, many of these models imply that maximal punishment is,
in fact, optimal, which would be especially striking if interpreted as the maximum
punishment humanly (not ethically) possible.

Since our objective function is already utilitarian, any additional moral constraint is
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a departure from utilitarianism. In other words, the justification that a utilitarian
would never punish above some bound is precisely that such punishment is never
an unconstrained maximum of a utilitarian objective function.

This paper presents two main findings.

The first is that optimal punishment must always be non-decreasing in the posterior
probability of guilt. This sounds intuitive, but is surprising for two reasons. First,
this result holds no matter how individuals respond to punishment (indeed, they
may even commit more crimes with more punishment). Second, this implies that
punishment must ignore the relative ranking of suspects. In particular, for a given
posterior probability of guilt, the optimal punishment cannot depend on whether
an individual is the “top” suspect.

The second is that, for a large class of individual behavior including all rational
(expected utility maximizing) actors, optimal punishment must only punish upon
the realization of the most-incriminating evidence, no matter how rare. This is a
repugnant conclusion, and leads me to believe that these seemingly weak assump-
tions placed on behavior (which include all standard economic models of behavior)
does not reflect reality.

The rest of the paper is organized as follows. Section 2 introduces the model.
Sections 3 and 4 discuss the main results. Section 5 concludes.

2 Model

Fix some action. Implicitly, this can be thought of as a criminal action, but since
this term is somewhat loaded, I would like to think of it simply as any action that
results in a net social loss. That being said, for simplicity I will refer to this action
as a “crime”. To fix ideas, one can think of this crime as murder.

Fix an observable state of affairs. For each state of affairs (the individuals’ criminal
records, the time of year, etc.), there may be a different set of primitives. Indeed,
if an individual was convicted of assault in the past, we may think that he is more
likely to commit murder in the future. Moreover, crime rates are generally higher
in the summer than in the winter.

For a given crime and a given state of affairs, let I be a finite set of n individuals.
Let ci > 0 be the net cost to society of individual i committing the crime. Note that
the crime may be beneficial to some individuals (e.g., individual i), but on net the
crime is bad for society. Let δi ∈ (0, 1] be the probability that a crime committed
by i is detected. For an action like murder, δi is probably close to one, but for other
actions it may not be (e.g., running a red light, trespassing, etc.).

Let Φ be the set of all possible things that can be observed at a crime scene. We
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will call this “evidence” and will take it to be finite. For example, we may observe
“one of Joe’s shoes and a hair whose DNA matches to Joe” at a crime scene, so
this is an element of Φ. Let λi ∈ ∆Φ be the distribution over evidence that i leaves
behind upon committing a crime.

Let κi : ∆R+ → R+ be a behavioral response function for individual i. This function
takes as input the distribution of punishments that i will face upon committing
a crime and produces as output i’s resulting crime rate (actions per unit time,
e.g., murders per year). Note that individuals are not modeled as rational actors
who choose the number of crimes to commit based on expected costs and benefits.
That would be a special case of this model. Rather, I allow for i’s behavior to
depend arbitrarily on the distribution of punishments he faces upon committing the
crime.

Consider the following fact.

Fact 1. If there exists any punishment plan, no matter how extreme, that fully
deters crime, then this plan is optimal.

Since there is no crime, there is also no punishment—only the threat of punishment.
Do we believe that there exists such a punishment plan? No (if we did we would
implement it and enjoy a crime-free, punishment-free state). This can be seen
as a critique of rational agent models in which individuals commit crimes if and
only if their expected benefits outweigh their expected costs. In such a model,
there always exists a punishment large enough (when punishment is unbounded or
has a sufficiently high bound) such that all individuals will be fully deterred from
committing crimes.

Instead, we might believe there is always a chance of “crimes of passion”—crimes
that occur in the heat of the moment that aren’t subject to rational deliberation
(and hence aren’t deterred by large punishments). In particular, suppose individuals
act rationally most of the time, but sometimes commit crimes of passion. Formally,
for some p ∈ [0, 1], individuals have crime rate pκi(πi(λi)) + (1 − p)κ̄i, where p is
the fraction of the time that they are rational and κ̄i is their crime rate when acting
irrationally. Let’s call such an individual p-rational.

For p < 1, arbitrarily large punishments are almost certainly not optimal, since,
even if rational behavior is fully deterred, irrational behavior will persist, requiring
these large punishments to be carried out. By modeling individual behavior using
behavioral response functions, p-rationality is immediately included as a special
case.1

Next, I introduce the government’s choice variable. The government chooses a

1Though, as we will see in Section 4, even p-rationality leads to repugnant conclusions and hence
seems behaviorally implausible.
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punishment plan π : Φ → ∆(Rn
+) mapping observed evidence to potentially ran-

dom punishments for each individual. The following are examples of punishment
plans:

1. if any crime is detected, punish everyone a fixed amount

2. if any crime is detected, punish each individual a fixed amount independently
with probability .5

3. punish anyone a fixed amount who eye-witnesses can identify at the crime
scene (for each i, punish for an i-specific subset of Φ)

4. punish anyone a fixed amount who eye-witnesses can identify at the crime
scene, and punish anyone for which DNA evidence links them to the crime
scene twice as much

Punishment, both for the input to κi and the output of π, will be measured in disu-
tility. We could equivalently consider a particular type of punishment (e.g., electric
shocks or hard labor) and work with expected utilities over these punishments, but
since the method of punishment is not relevant to the analysis, it is more transpar-
ent to simply abstract away from it. In other words, I am not interested in what
gives rise to the disutility, I am just interested in how much disutility in fact arises.2

Notice that feasible punishment (disutility) is unbounded.3

For a given punishment plan π, we can define the government’s beliefs as follows.
The probability of observing ϕ conditional on i committing the crime (and it being
detected) is defined by

Pπ(ϕ | i) ≡ λi(ϕ).

The total probability that i committed the crime (conditional on detection) is de-
fined by the total number of crimes i commits that are detected (per unit time)
divided by the total number of crimes that are detected overall (per unit time),

Pπ(i) ≡
δiκi(δiπi(λi))∑

j∈I δjκj(δjπj(λj))
.

The joint distribution over I × Φ is then given by

Pπ(ϕ and i) = Pπ(ϕ | i)Pπ(i) = λi(ϕ)
δiκi(δiπi(λi))∑n

j=1 δjκj(δjπj(λj))
.

2Notice that it may take different amounts of a particular punishment to induce the same amount
of disutility across individuals.

3This can be interpreted in a few ways. First, we might believe punishment is in fact physically
unbounded. Second, we might believe that there is a physical bound on punishment (i.e.. a bound
on the disutility an individual can experience), but that we would like to consider a hypothetical
world in which punishment is unbounded, and ask if in such a world we would ever use arbitrarily
large punishments. Third, we might think that there is a physical bound on punishment, but that it
is sufficiently high to never bind in our analysis (that is, if optimal punishment calls for arbitrarily
large punishments, punishment at the upper bound will also suffice).
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The government chooses a punishment plan to minimize the expected utilitarian
loss, defined by

L(π) ≡
∑
i∈I

κi(δiπi(λi))

(
ci + δi

∑
ϕ∈Φ

λi(ϕ) (E[π1(ϕ)] + . . .+ E[πn(ϕ)])
)
.

For each crime committed by each i, society experiences a loss of ci. With probability
δi, the crime is detected and punishments are carried out and

∑
ϕ∈Φ λi(ϕ)(E[π1(ϕ)]+

. . .+E[πn(ϕ)]) is the expected total punishment. It will prove useful to alternatively
express L by

L(π) =
∑
i∈I

κi(δiπi(λi))ci

+
∑
j∈I

δjκj(δjπj(λj))
∑
i∈I

Pπ(i)

δi
δi
∑
ϕ∈Φ

Pπ(ϕ | i) (E[π1(ϕ)] + . . .+ E[πn(ϕ)])

=
∑
i∈I

κi(δiπi(λi))ci

+
∑
j∈I

δjκj(δjπj(λj))
∑
ϕ∈Φ

Pπ(ϕ) (E[π1(ϕ)] + . . .+ E[πn(ϕ)]) .

The left term is the net loss from all crimes committed (detected or not). The
right term is the expected total punishment from all crimes that are committed and
detected.

3 Theorem 1

It turns out that we can say a fair amount about an optimal punishment plan
without placing any restrictions on individual behavior. In particular, an optimal
punishment plan must be non-decreasing in the posterior probability of guilt.

Theorem 1. An optimal punishment plan π is non-decreasing in the posterior prob-
ability of guilt. That is, for all i ∈ I and ϕ, ϕ′ ∈ Φ,

Pπ(i | ϕ′) > Pπ(i | ϕ) =⇒ E[πi(ϕ′)] ≥ E[πi(ϕ)].

Proof. Suppose by contradiction that for some ϕ′, ϕ ∈ Φ, Pπ(i | ϕ′) > Pπ(i | ϕ) and
E[πi(ϕ

′)] < E[πi(ϕ)] in an optimal punishment plan π. Consider another punishment plan π′

such that π′
i(ϕ

′) = π′
i(ϕ) ≡ π′

i, where π
′
i gives punishment πi(ϕ

′) with probability λi(ϕ
′)

λi(ϕ′)+λi(ϕ)

and πi(ϕ) with probability λi(ϕ)
λi(ϕ′)+λi(ϕ)

. If i commits a crime, she faces the same punishment
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distribution under both plans,4 so her crime rate is unchanged. The punishment plans are
identical for all j ̸= i, so everyone else’s crime rate is unchanged. Hence, Pπ = Pπ′ ≡ P.

Note that

E[π′
i] =

λi(ϕ
′)

λi(ϕ′) + λi(ϕ)
E[πi(ϕ

′)] +
λi(ϕ)

λi(ϕ′) + λi(ϕ)
E[πi(ϕ)]

=
P(ϕ′)P(i | ϕ′)

P(ϕ′)P(i | ϕ′) + P(ϕ)P(i | ϕ)
E[πi(ϕ

′)] +
P(ϕ)P(i | ϕ)

P(ϕ′)P(i | ϕ′) + P(ϕ)P(i | ϕ)
E[πi(ϕ)].

The expected utilitarian loss under π′ is lower than under π, since

L(π′) < L(π)

⇐⇒
∑
ϕ̂∈Φ

P(ϕ̂)
(
E[π′

1(ϕ̂)] + . . .+ E[π′
n(ϕ̂)]

)
<

∑
ϕ̂∈Φ

P(ϕ̂)
(
E[π1(ϕ̂)] + . . .+ E[πn(ϕ̂)]

)
⇐⇒ P(ϕ′)E[π′

i(ϕ
′)] + P(ϕ)E[π′

i(ϕ)] < P(ϕ′)E[πi(ϕ
′)] + P(ϕ)E[πi(ϕ)]

⇐⇒ E[π′
i] <

P(ϕ′)

P(ϕ′) + P(ϕ)
E[πi(ϕ

′)] +
P(ϕ)

P(ϕ′) + P(ϕ)
E[πi(ϕ)]

Plugging in for E[π′
i] and doing some algebra, we have

⇐⇒ (P(i | ϕ′)− P(i | ϕ))E[πi(ϕ
′)] < (P(i | ϕ′)− P(i | ϕ))E[πi(ϕ)]

which is true by assumption, contradicting that π is an optimal punishment plan. ■

Intuitively, the proof states the following. For any punishment plan π which is
not weakly increasing in the posterior probability of guilt for some individual i, we
may construct another punishment plan π′ that is weakly increasing in i’s posterior
probability of guilt such that i faces precisely the same distribution over punishments
upon committing a crime and which leaves everyone else’s punishments unchanged.
Thus, each individual’s incentives and behavior remain the same. What is different?
The expected punishment for j conditional on someone else committing a crime is
smaller under π′ than under π. By switching to π′, we punish j less when j is
innocent, keeping everything else the same.

This result shows that there is a fundamental relationship between utilitarianism
and punishment. No matter how individuals respond to incentives,5 a utilitarian
policy must never prescribe less punishment when more incriminating evidence is
observed.

An immediate, but surprisingly powerful, corollary is the following.

4Under π, i faces punishment πi(ϕ
′) with probability λi(ϕ

′) and punishment πi(ϕ) with proba-
bility λi(ϕ). Under π′, i faces punishment πi(ϕ

′) with probability

λi(ϕ
′) · λi(ϕ

′)

λi(ϕ′) + λi(ϕ)
+ λi(ϕ) ·

λi(ϕ
′)

λi(ϕ′) + λi(ϕ)
= λi(ϕ

′)

and similarly for πi(ϕ).
5It is even possible that they commit more crimes with more punishment.
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Corollary 1. An optimal punishment plan ignores the order of suspects. That is,
it does not depend on the relative probability of guilt across suspects.

For example, consider some evidence ϕ for which P(Joe | ϕ) = 1/3 and the remaining
2/3 probability is dispersed evenly over the remaining billion individuals. Intuitively,
Joe is our top suspect, and in fact the only individual we have substantial evidence
against. We are somewhat sure that he is guilty. Suppose we decide to give him a
modest punishment in this case.

Now consider another evidence ϕ′ for which P(Joe | ϕ′) = 1/3+ ε and P(Bob | ϕ′) =
2/3 − ε. Intuitively, Bob is our top suspect. We are quite sure that Bob is guilty,
but there is also a reasonable chance that Joe is guilty.

It is never optimal to punish Joe less in the second scenario than the first. In other
words, it doesn’t matter that Joe is or is not our top suspect. If we decide to punish
him when his probability of guilty is 1/3, then we must punish him no less when
his probability of guilt is larger than 1/3, regardless of our beliefs about the guilt of
other individuals like Bob.

4 Theorem 2

Next, we consider a weak assumption on individual behavior which includes as a
special case all rational (expected utility maximizing) behavior.

Definition 1. A behavioral response function κi : ∆R+ → R+ respects the mean if
for any X,Y ∈ ∆R+,

E[X] = E[Y ] =⇒ κi(X) = κi(Y ).

This says that i’s behavior depends only on his expected utility (recall punishment
is measured in disutility). It doesn’t matter how i treats different expected punish-
ments (he could commit more crimes with higher expected punishment), only that
all punishments with the same expectation induce the same behavior. All rational
and p-rational agents satisfy this condition.

Theorem 2. If κi respects the mean, then an optimal punishment plan π only
punishes i when the most incriminating evidence is observed. That is, for any
ϕ, ϕ′ ∈ Φ,

Pπ(i | ϕ′) > Pπ(i | ϕ) =⇒ πi(ϕ) = 0.

Proof. Suppose by contradiction that for some ϕ′, ϕ ∈ Φ, Pπ(i | ϕ′) > Pπ(i | ϕ) and
E[πi(ϕ)] > 0 in an optimal punishment plan π.6 Consider another punishment plan π′ such

6Since we are only considering non-negative punishment, E[πi(ϕ)] = 0 implies πi(ϕ) = 0 with
probability 1.
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that E[π′
i(λi)] = E[πi(λi)] with E[π′

i(ϕ
′)] > E[πi(ϕ

′)] ≥ 0, π′
i(ϕ) = 0, and all other punish-

ments unchanged. If i commits a crime, she faces the same expected punishment under both
plans, and since κi respects the mean, her crime rate is unchanged. The punishment plans
are identical for all j ̸= i, so everyone else’s crime rate is unchanged. Hence, Pπ = Pπ′ ≡ P.

Note that

E[π′
i(λi)] = E[πi(λi)]

⇐⇒
∑
ϕ̂∈Φ

λi(ϕ̂)E[π′
i(ϕ̂)] =

∑
ϕ̂∈Φ

λi(ϕ̂)E[πi(ϕ̂)]

⇐⇒ P(ϕ′ | i)E[π′
i(ϕ

′)] = P(ϕ′ | i)E[πi(ϕ
′)] + P(ϕ | i)E[πi(ϕ)]

⇐⇒ P(i | ϕ′)P(ϕ′)

P(i)
E[π′

i(ϕ
′)] =

P(i | ϕ′)P(ϕ′)

P(i)
E[πi(ϕ

′)] +
P(i | ϕ)P(ϕ)

P(i)
E[πi(ϕ)]

⇐⇒ P(ϕ′)E[π′
i(ϕ

′)] = P(ϕ′)E[πi(ϕ
′)] +

P(i | ϕ)P(ϕ)
P(i | ϕ′)

E[πi(ϕ)]

The expected utilitarian loss under π′ is lower than under π, since

L(π) > L(π′)

⇐⇒
∑
ϕ̂∈Φ

P(ϕ̂)
(
E[π1(ϕ̂)] + . . .+ E[πn(ϕ̂)]

)
>

∑
ϕ̂∈Φ

P(ϕ̂)
(
E[π′

1(ϕ̂)] + . . .+ E[π′
n(ϕ̂)]

)
⇐⇒ P(ϕ′)E[πi(ϕ

′)] + P(ϕ)E[πi(ϕ)] > P(ϕ′)E[π′
i(ϕ

′)]

⇐⇒ P(ϕ′)E[πi(ϕ
′)] + P(ϕ)E[πi(ϕ)] > P(ϕ′)E[πi(ϕ

′)] +
P(ϕ)P(i | ϕ)
P(i | ϕ′)

E[πi(ϕ)]

⇐⇒ P(i | ϕ′) > P(i | ϕ)

which is true by assumption, contradicting that π is an optimal punishment plan. ■

Intuitively, the proof proceeds analogously to Theorem 1. For any punishment plan
π which inflicts positive punishment on individual i upon observing something less
than the most incriminating evidence, we may construct another punishment plan
π′ that inflicts no punishment upon observing this evidence and positive punishment
upon observing more incriminating evidence, such that i faces precisely the same
expected punishment upon committing a crime and which leaves everyone else’s
punishments unchanged. Thus, each individual’s incentives and behavior remain the
same. What is different? The expected punishment for j conditional on someone
else committing a crime is smaller under π′ than under π. By switching to π′, we
punish j less when j is innocent, keeping everything else the same.

This result shows that there is a fundamental relationship between utilitarianism,
punishment, and behavior which depends only on one’s expected utility. If an in-
dividual respects the mean, a utilitarian policy must never prescribe them positive
punishment when more incriminating evidence exists.

For example, suppose we observe DNA evidence pointing to Joe, ϕ, for which P(Joe |
ϕ) = .99. Suppose we decide to punishment him in this case. But it is conceivable
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that we observe DNA evidence pointing to Joe and the testimony of 50 eye-witnesses,
ϕ′, for which P(Joe | ϕ′) = .999. So it cannot be optimal to punish Joe in the first
case.

I consider this a repugnant conclusion. The observation that rational agents can gen-
erally be fully deterred, implying arbitrarily large punishments are optimal, helped
us to see that agents likely aren’t rational in these settings. From here, I proposed
p-rationality, which seems to capture the intuition that some crimes (of passion)
may be undeterrable, implying full deterrence is not possible and arbitrarily large
punishments are likely not optimal.

Here, we observe that individuals that respect the mean can, given any punishment
plan, be equivalently deterred by placing some amount of punishment on a sin-
gle piece of evidence (possibly with arbitrarily small probability of realizing). This
implies that optimal punishment must place all punishment on the most incriminat-
ing evidence (since this minimizes the probability of punishing innocent bystanders
without changing the incentives of potential offenders). Naturally, if these assump-
tions were true, then we should want to adopt this policy. Our (presumed) hesitation
reveals the absurdity of the assumption of rationality, and indeed, p-rationality, in
these contexts. I conclude from this that the ubiquitous and seemingly innocuous
assumption of respecting the mean likely does not capture individual behavior in
the context of crime.

5 Conclusion

I present a simple model of crime and punishment and analyze the optimal response
of a utilitarian government. I find that no matter how individuals respond to pun-
ishment, optimal punishment is non-decreasing in the posterior probability of guilt.
Moreover, if individuals respond to punishment in commonly assumed ways, optimal
punishment only punishes upon the realization of the most-incriminating evidence,
no matter how rare. This leads me to question the standard assumptions placed
upon individual behavior in economics within the context of crime.
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