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Abstract

We introduce the concept of an arbitrary distribution and show how to ap-
ply descriptive statistics to them. Arbitrary distributions extend the domain
of distributions on which statistics can be usefully applied beyond the usual
frequency and probability distributions. For example, we can consider the dis-
tribution of the benefits of a policy across income levels and over time, and we
can compute the center of mass and the spread of such a distribution. The key
challenge is that such benefits, or more generally the weights within an arbi-
trary distribution, can be negative. We propose a method which we call ironing
as a natural solution to the problem of statistics for arbitrary distributions.

1 Introduction

Many social programs have benefits that are distributed unevenly across income
levels and across time. For these social programs, it can be useful to compute the
average income level and the average time at which the benefits accrue, along with
the standard deviation of the benefits across income levels and across time. This
allows researchers and policymakers to communicate the central location of the
benefits from the social program, as well as its spread. Unfortunately, many social
programs do not benefit everyone across all income levels or at all times, but rather
provide benefits to some and impose costs on others. Because such distributions can
take negative values, standard summary statistics are not appropriate. We propose
a method which we call ironing as a natural solution to the problem of statistics for
arbitrary distributions, allowing us to apply standard descriptive statistics to a far
more general class of distributions than before.

A distribution is an allocation of stuff along some dimension. For example, we may
have a distribution of probability (stuff) over time (dimension), we may have a
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distribution of the benefits of a policy over time, or we may have a distribution of
the benefits of a policy across income levels.

dimension

stuff

When doing statistics, the stuff is interpreted as providing a weight for each point
along the dimension. For example, in a distribution of probability over time, each
point in time is weighted by the probability assigned to that point. The median
time by probability is the time at which half of the probability occurs at or below
that time and is a measure of the central tendency of probability across time. The
average time by probability is a weighted sum across time weighted by probability
and is a measure of the center of mass of probability across time. The standard
deviation of time by probability is the square root of a weighted sum across time
of the squared deviation from the average time weighted by probability and is a
measure of the spread of probability across time.

In the very same way, we may compute the median, average, and standard deviation
of time by the benefits of a policy. The median time by benefits is the time at which
half of the benefits occurs at or below that time and is a measure of the central
tendency of benefits across time. The average time by benefits is a weighted sum
across time weighted by benefits and is a measure of the center of mass of benefits
across time. The standard deviation of time by benefits is a measure of the spread
of benefits across time.
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Figure 1: Consider measuring the impact on earnings of an educational reform on
children over time. At each moment in time (represented continuously for sim-
plicity), we plot the additional earnings that children who received the educational
reform earned over children who did not. µ is the mean, Q2 is the median (second
quartile), and σ is the standard deviation of the distribution.

Similarly, we may take that same policy and compute the median, average, and
standard deviation of income by the benefits of the policy. The median income level
by benefits is the income level at which half of the benefits occurs at or below that
income level and is a measure of the central tendency of benefits across income.
The average income level by benefits is a measure of the center of mass of benefits
across income. The standard deviation of income level by benefits is a measure of
the spread of benefits across income.
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Figure 2: Consider measuring the impact on earnings of an educational reform on
children across the income spectrum. At each income level (represented continuously
for simplicity), we plot the additional earnings that children at each income level
who received the educational reform have over children who did not (per capita).

However, notice that the benefits of a policy at a given time or on those at a given
income level can, in fact, be negative.
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A central question, and the primary question of this paper, is:

How can we apply standard statistics to arbitrary distributions, where
weights can meaningfully be negative?

As we will see, most standard statistics—including the mean and standard deviation—
do not behave in intuitive or desirable ways when weights can be negative.1 We
propose a solution, which we call ironing,2 as a method to apply standard statis-
tics to arbitrary distributions. Ironing transforms an arbitrary distribution (which
may have negative regions) into a classical distribution (which is everywhere non-
negative), upon which we may apply standard statistics.

The key takeaways from this paper are threefold.

1. Arbitrary distributions, beyond probability and frequency distributions, are
useful objects.

2. We can usefully apply standard statistics, such as mean and standard de-
viation, to arbitrary distributions when they are everywhere non-negative.
However, applying standard statistics to arbitrary distributions in general fails
what we call the binning principle—that small changes in the precision level of
the dimension of interest should not result in disproportionately large changes
in the statistic.

3. We propose a method we call ironing as a natural solution to the problem of
statistics for arbitrary distributions. Ironing bins observations together in the
least obtrusive3 way such that the resulting distribution is everywhere non-
negative. From here, we may apply statistics in the standard way. We show
that for all well-behaved distributions, such a solution exists and is unique.

Takeaway 1 was already discussed above. Takeaways 2 and 3 are discussed below,
in turn.

1See Section 1.1 for a discussion.
2The term is inspired by “Myerson ironing”, a procedure for transforming a non-monotonic

allocation rule into a monotonic (and, in this context, optimal) one. See Myerson (1981).
3This is defined formally in Sections 1.2 and 2.
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1.1 The Binning Principle

The motivation for ironing rests upon a basic principle, which we call the binning
principle. Binning is a method of pooling, or smoothing, nearby data points. For ex-
ample, an individual’s date of birth is not usually measured or reported to the hour,
but rather to the day. Hence, birthdays are usually binned to the day, spreading the
weight of observations uniformly throughout the hours of that day. Birthdays may
also be binned to the month or the year depending on context, again spreading the
weight uniformly throughout the month or year.

Define binning as smoothing data points across an interval. The binning principle
states that small changes in bin size should not result in disproportionately large
changes in the statistic.

Binning Principle. Small changes in bin size should not result in dis-
proportionately large changes in the statistic (relative to the bin size).4

A reflection on binning for arbitrary distributions leads to an important insight. For
most weights of interest, there is nothing qualitatively different between positive and
negative weights. Positive values are simply positive on net. Negative values are
simply negative on net.

Suppose we are interested in the effect of an educational reform on students’ earnings
over time. Consider plotting the total earnings across time of a student who received
some treatment minus their total earnings had they (counterfactually) not received
the treatment. Or consider plotting its empirical analogue—the total earnings of a
treatment group of students minus the total earnings of a control group over time. In
either case, measuring the total earnings gap between the treated and the untreated
by day will likely result in significant swings between positive and negative earnings
gaps (e.g., due to different paydays), while binning the data by month or year will
be more uniform.

4A small change to a small bin should lead to no more than a small change in the statistic. On
the other hand, a small change to a large bin may lead to a larger change in the statistic, since
additional observations are being smoothed across a larger interval.
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Figure 3: The first chart bins the earnings gap between students with and without a
treatment by day, smoothing the earnings gap at each hour in a given day uniformly
across the day. The second chart bins the earnings gap by month, smoothing the
earnings gap at each day in a given month uniformly across the month.

In particular, $100 of increased earnings on a particular day d does not mean there
were no losses of earnings on that day—it simply means that, on net, there was
$100 of increased earnings in total. For example, one individual might gain $150
and another lose $50 on that day. But now suppose we zoom in and measure
earnings at the hour it happened. Then at hour h there might be a gain of $150
and at hour h + k there might be a loss of $50. The binning principle says that
measuring an earnings gap by day or by hour should not significantly change the
resulting statistics.

Most standard statistics violate the binning principle when applied to distributions
with negative regions. For example, consider the mean. Suppose a policy delays
the time at which you are paid by w (say, one minute) but increases your earnings
by h (say, $100). Your previous earnings were x (say, $50k). Call this benefits
distribution f . Suppose we want to compute the mean of f—the time at which the
benefits of this policy are centered.
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Figure 4: The first chart plots f , binning by minute. The second chart plots f̂ ,
binning the two minutes around t and t+ w together.

If we create a bin just large enough to smooth the benefits at t and t+w, the average
time of the benefits of the policy

E(f̂) = t+
w

2
,

as one would expect. All the benefits (positive and negative), which net to h units
in total, are happening around t and t+w, so we would expect the average time of
benefits to be around t and t+ w as well.

If we do not bin these two minutes together, the average time of the benefits of the
policy

E(f) =
(x+ h) · (t+ w) + (−x) · t

h
=

xw

h
+ t+ w.

If w > 0, as your previous earnings x → ∞ or your additional earnings h → 0, the
average time of benefits E(f) → ∞. If w < 0, as your previous earnings x → ∞ or
as your additional earnings h → 0, the average time of benefits E(f) → −∞. This is
peculiar. All the benefits (positive and negative) are occurring around t and t+ w,
but as we make your previous earnings higher (not changing when it occurs) and/or
your additional earnings lower (not changing when it occurs), the average time of
benefits shoots off to infinity or negative infinite, depending on whether your old
paycheck came before or after your new paycheck.

1.2 Ironing

The binning principle states that small changes in bin size should not result in dis-
proportionately large changes in the statistic. The method we propose for doing
statistics on arbitrary distributions, which we call ironing, builds on this princi-
ple.
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The central idea behind ironing is the following. We know that standard statistics
work in intuitive and desirable ways for distributions which are everywhere non-
negative. The binning principle says that decreasing the bin size slightly—which
may introduce negative regions that weren’t previously there—shouldn’t change the
statistic by much. Hence, even if we don’t have a good way of computing the
statistic directly from a distribution with negative regions, we can deduce that it
should be close to the statistic applied to a distribution with slightly larger bins, if
that distribution is everywhere non-negative.

This motivates the idea that, when faced with a distribution with negative regions,
we should attempt to bin these negative regions in the least obtrusive way (roughly,
with the smallest bins), such that the resulting distribution is everywhere non-
negative. The binning principle tells us that the statistic applied to this distribu-
tion should be relatively close to the ideal statistic applied to the original distribu-
tion.
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Figure 5: The first chart plots the earnings gap between a treated group and an
untreated group across income levels binned to the dollar. The second chart plots
the earnings gap with bins sufficiently large to smooth the positive and negative
swings across individuals. The mean (µ) and standard deviation (σ) of the latter
distribution is 285.20 and 84.03, respectively. By the binning principle, the “ideal”
mean and standard deviation of the former distribution should be relatively close
to 285.20 and 84.03, respectively.

We propose that a sensible way to construct such bins is to minimize the movement of
weights across the dimension of interest. Binning involves smoothing weights across
an interval, which involves moving weights away from their initial location. For
any two distributions, we can measure the distance between them as the minimum
distance required to move the weights from one to achieve the other.5 Hence, given

5Formally, this is known as the earth mover’s distance, or the Wasserstein-1 metric. See Section 2
for a formal definition.
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any arbitrary distribution f , we seek an “ironed” distribution f̃ which minimizes
the distance to f among all distributions which are everywhere non-negative. We
show that such a distribution exists and is unique in Section 2.

It turns out that this distance can be measured quite simply as the total absolute
deviation between the respective cumulative distribution functions. Hence, given
any arbitrary cumulative distribution function F (which may be non-monotonic),
normalized by the total weight, the ironed cumulative distribution function F̃ is the
classical (i.e., non-decreasing) cumulative distribution function which minimizes the
total absolute distance to F . We may then apply standard statistics as usual on the
ironed distribution F̃ .

F
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1 2 3
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t

f

f̃

1 2 3
0

1

t

Figure 6: The first chart plots the arbitrary cumulative distribution function F
alongside the ironed cumulative distribution function F̃ . The second chart plots the
associated arbitrary density function f alongside the ironed density function f̃ .

Let FCDF be the set of all classical (non-decreasing) cumulative distribution func-
tions. The ironing procedure can then be described as follows.

1. Consider any arbitrary cumulative distribution function F normalized by the
total weight, i.e. where

∫∞
−∞ dF (t) = 1.6 F (t) is interpreted as the fraction

of the total weight assigned to t or below.

2. Iron the distribution, i.e., compute

F̃ ∈ argmin
F̂∈FCDF

∫ ∞

−∞

∣∣F (t)− F̂ (t)
∣∣ dt.

F̃ exists and is unique by Theorems 1 and 2.

3. Do statistics on the ironed distribution F̃ .

6The total weight is assumed to be strictly positive. It is not clear what it means to ask, for
example, where the center of mass occurs when the total weight is zero. Similarly, if the total
weight is negative, we would ask where the center of negative mass occurs (i.e., flip the sign and
relabel).
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2 Formal Results

2.1 Setup

A classical cumulative distribution function is standard from probability theory.

Definition 1. A function F : R → R is a classical cumulative distribution function7

if

1. F is non-decreasing,

2. F is right-continuous,

3. limx→−∞ F (x) = 0, and

4. limx→∞ F (x) = 1.

Henceforth, we will refer to such functions as classical CDFs, or simply CDFs. Let
FCDF be the set of all CDFs. Removing properties 1, 3, and 4, we define an arbitrary
cumulative distribution function as any function which is right-continuous.

Definition 2. A function F : R → R is an arbitrary cumulative distribution function
if F is right-continuous.

As discussed in Section 1, we seek to measure the distance between two distributions
by the minimum distance required to move the weights from one to achieve the other.
Formally, this is known as the earth mover’s distance, or the Wasserstein-1 metric.
Intuitively, if two distributions are each interpreted as piles of earth, the earth
mover’s distance represents the minimum cost of transforming one pile of earth into
the other, where the cost is the amount of earth moved multiplied by the distance
moved.

Definition 3. The 1-Wasserstein distance8 between any two real-valued functions
F1 and F2, denoted W1(F1, F2), is given by

W1(F1, F2) =

∫ ∞

−∞

∣∣F1(t)− F2(t)
∣∣ dt.

Finally, we say that a CDF, FCDF, is a best approximation to an arbitrary cumu-
lative distribution function, F , from the set of all CDFs if it minimizes the earth
mover’s distance to F among all CDFs.

7See, e.g., Ash (2008, p. 69).
8Note that this is a slight generalization, as the usual definition of the 1-Wasserstein distance is

defined for any two cumulative distribution functions F1 and F2, rather than for any two real-valued
functions.
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Definition 4. A function FCDF ∈ FCDF is a best approximation to F ∈ F from
FCDF if

W1(F, F
CDF) = inf

F̂∈FCDF
W1(F, F̂ ).

We now show that such a best approximation exists (Theorem 1) and, for well-
behaved arbitrary distributions, is unique (Theorem 2).

2.2 Existence

Lemma 1. (FCDF,W1) is a complete metric space.

Proof. Let (R,B, λ) be a measure space, where B is the Borel sigma-algebra on R
and λ is the Lebesgue measure on R. The space L1(R,B, λ) consists of all real-valued
measurable functions on R that satisfy

∥f∥L1 ≡
∫ ∞

−∞
|f(x)| dx < ∞.

Notice that the L1 norm induces the W1 metric—i.e., W1(F1, F2) = ∥F1 − F2∥L1 .

We call two functions F1, F2 ∈ L1 equivalent if F1 = F2 almost everywhere—i.e.,
W1(F1, F2) = 0. By the Riesz-Fischer theorem, L1 is complete. That is, every
Cauchy sequence of functions in L1 converges to a function in L1 under the W1

metric (or, more precisely, every Cauchy sequence of equivalence classes of functions
in L1 converges to an equivalence class of functions in L1 under the W1 metric).
We would like to show that any Cauchy sequence of equivalence classes containing
a CDF converges to an equivalence class of functions containing a CDF under the
W1 metric. For convenience, we will sometimes refer to this as a sequence of CDFs
rather than a sequence of equivalence classes that contain a CDF.

Let {Fn}∞n=1 be a Cauchy sequence of CDFs (i.e., Fn ∈ FCDF for all n) with respect
to the W1 metric. Let Hn ≡ Fn − F1 for all n. Then for large enough k, {Hn}∞n=k

is a Cauchy sequence of L1 functions, so it converges in the L1 norm to an L1 limit
function H. Let F ≡ H + F1. Then {Fn}∞n=1 converges to F in the W1 metric.

We first would like to show that F is non-decreasing (i.e., that Fn converges to
an equivalence class that contains a non-decreasing function). If Hn → H in L1,
then there exists a subsequence of Hn which converges pointwise to H almost ev-
erywhere,9 and hence there exists a subsequence of Fn = Hn + F1 which converges
pointwise to F = H+F1 almost everywhere. Let X ⊆ R denote the set of points for
which Fn converges to F pointwise. We know that Fn = Hn + F1 is non-decreasing
for all n. Hence, F is non-decreasing on X. To see this, suppose by contradiction
that there exists x, y ∈ X such that x < y and F (x) > F (y). Since Fn → F

9See Belk (2015, Proposition 7).
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pointwise on X, there exists N such that for all n > N , Fn(x) > Fn(y), a contra-
diction. Since F is non-decreasing on X, which contains all but a measure zero of
points, there exists a function G which is non-decreasing everywhere in the same
equivalence class (i.e., W (F,G) = 0). □

We would now like to show that F is right-continuous (i.e., that Fn converges to an
equivalence class that contains a non-decreasing, right-continuous function). Every
non-decreasing function is equivalent to a right-continuous, non-decreasing function.
To see this, suppose that F is non-decreasing and let G(x) = limy→x+ F (y) for all
x. G is right-continuous by construction. Moreover, G(x) = F (x) at every point x
where F is continuous. Since F is non-decreasing, it has at most a countable set of
discontinuity points. Hence, G(x) = F (x) almost everywhere. □

Finally, we would like to show that limx→−∞ F (x) = 0 and limx→∞ F (x) = 1. Sup-
pose by contradiction that limx→−∞ F (x) ̸= 0. Since F is non-decreasing, either
limx→−∞ F (x) = c ̸= 0 or F diverges. In either case,

∫∞
−∞

∣∣Fn(t) − F (t)
∣∣ dt di-

verges for any n, since limx→−∞ Fn(x) = 0 for each n—a contradiction. Hence,
limx→−∞ F (x) = 0. A similar argument shows limx→∞ F (x) = 1. □ ■

Theorem 1. For any F ∈ F , a best approximation to F from FCDF exists.

Proof. (FCDF,W1) is a complete metric space by Lemma 1. Hence, there exists
F ∈ FCDF such that

W1(F, F
CDF) = inf

F̂∈FCDF
W1(F, F̂ ).

■

2.3 Uniqueness

Lemma 2. FCDF is convex.

Proof. We would like to show that for any F,G ∈ FCDF and α ∈ (0, 1), αF + (1−
α)G ∈ FCDF.

1. If F and G are non-decreasing, then for any x < y, F (x) ≤ F (y), G(x) ≤ G(y),
and hence αF (x) + (1− α)G(x) ≤ αF (y) + (1− α)G(y). So αF + (1− α)G is
non-decreasing.

2. If F and G are right-continuous, so that for all c ∈ R+, limx→c+ F (x) = F (c)
and limx→c+ G(x) = G(c), then for all c ∈ R+, limx→c+ αF (x)+(1−α)G(x) =
αF (c) + (1− α)G(c). So αF + (1− α)G is right-continuous.

3. If limx→−∞ F (x) = limx→−∞G(x) = 0, then limx→−∞ αF (x)+(1−α)G(x) =
0.
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4. If limx→∞ F (x) = limx→∞G(x) = 1, then limx→∞ αF (x) + (1− α)G(x) = 1.

■

Theorem 2. For any F ∈ F , if F is continuous and there exists some FCDF such
that W1(F, F

CDF) < ∞, then there is a unique best approximation to F from FCDF.

Proof. There exists a best approximation to F from FCDF by Theorem 1. Suppose
by contradiction F1 ̸= F2 are each best approximations to F from FCDF. Then, by
assumption, W1(F, F1) = W1(F, F2) ≡ W ∗ < ∞. By Lemma 2, αF1 + (1 − α)F2 ∈
FCDF for any α ∈ (0, 1). Hence,

W1(F, .5(F1 + F2)) =

∫ ∞

−∞

∣∣F (t)− .5(F1(t) + F2(t))
∣∣ dt

=

∫ ∞

−∞

∣∣.5(F (t)− F1(t)) + .5(F (t)− F2(t))
∣∣ dt

≤
∫ ∞

−∞

∣∣.5(F (t)− F1(t))
∣∣+ ∣∣.5(F (t)− F2(t))

∣∣ dt
= .5

∫ ∞

−∞

∣∣(F (t)− F1(t))
∣∣ dt+ .5

∫ ∞

−∞

∣∣(F (t)− F2(t))
∣∣ dt

= W ∗.

Case 1. Suppose sign(F (t)−F1(t))× sign(F (t)−F2(t)) < 0 for some t.10 Then the
inequality above is strict, contradicting that F1 and F2 are best approximations.

Case 2. Suppose sign(F (t)− F1(t))× sign(F (t)− F2(t)) ≥ 0 for all t.

If F1 = F , then F2 = F (since F and F2 are right-continuous, any F2 ̸= F has
W1(F, F2) > 0), a contradiction with F1 ̸= F2. Suppose F ̸= F1 and F ̸= F2. Let
T+ = {t ∈ R : F1(t), F2(t) ≥ F (t)} and T− = {t ∈ R : F1(t), F2(t) ≤ F (t)}. Note
that T+ ∪ T− = R. Let

F ∗(t) =


min{F1(t), F2(t)} if t ∈ T+ \ T−

F1(t) = F2(t) if t ∈ T+ ∩ T−

max{F1(t), F2(t)} if t ∈ T− \ T+

.

We would now like to show that F ∗ ∈ FCDF.

10The sign function is defined by

sign(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

.
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1. F ∗ is non-decreasing,

Consider any x < y. We would like to show F ∗(y) ≥ F ∗(x).

Case 2.1.1. Suppose F (x) ≥ F1(x) ≥ F2(x) and F (y) ≥ F1(y) ≥ F2(y).
Then F ∗(x) = F1(x) and F ∗(y) = F1(y), so F ∗(y) = F1(y) ≥ F1(x) = F ∗(x).

Case 2.1.2. Suppose F (x) ≥ F1(x) ≥ F2(x) and F (y) ≥ F2(y) > F1(y).
Then F ∗(x) = F1(x) and F ∗(y) = F2(y), so F ∗(y) = F2(y) > F1(y) ≥ F1(x) =
F ∗(x).

Case 2.1.3. Suppose F (x) ≥ F1(x) ≥ F2(x) and F2(y) > F1(y) ≥ F (y).
Then F ∗(x) = F1(x) and F ∗(y) = F1(y), so F ∗(y) = F1(y) ≥ F1(x) = F ∗(x).

Case 2.1.4. Suppose F (x) ≥ F1(x) ≥ F2(x) and F1(y) > F2(y) ≥ F (y).
Then F ∗(x) = F1(x) and F ∗(y) = F2(y).

First, suppose F2(y) ≥ F1(x). Then F ∗(y) = F2(y) ≥ F1(x) = F ∗(x). Next,
suppose by contradiction F2(y) < F1(x). Then F1(y) ≥ F1(x) > F2(y) ≥
F2(x) and since F1 and F2 are non-decreasing, F1(t) > F2(t

′) for all t, t′ ∈ [x, y].
Since F is continuous, by the intermediate value theorem, there exists t∗ ∈
[x, y] and ε > 0 such that F1(t

∗ + ε) ≥ F1(x) = F (t∗) > F (t∗ + ε) > F2(y) ≥
F2(t

∗+ε). Hence, sign(F (t∗+ε)−F1(t
∗+ε))×sign(F (t∗+ε)−F2(t

∗+ε)) < 0,
contradicting Case 2.

Case 2.1.5. Suppose F2(x) > F1(x) ≥ F (x) and F (y) ≥ F1(y) ≥ F2(y).
Then F ∗(x) = F1(x) and F ∗(y) = F1(y), so F ∗(y) = F1(y) ≥ F1(x) = F ∗(x).

Case 2.1.6. Suppose F2(x) > F1(x) ≥ F (x) and F (y) ≥ F2(y) > F1(y).
Then F ∗(x) = F1(x) and F ∗(y) = F2(y), so F ∗(y) = F2(y) ≥ F2(x) > F1(x) =
F ∗(x).

Case 2.1.7. Suppose F2(x) > F1(x) ≥ F (x) and F2(y) > F1(y) ≥ F (y).
Then F ∗(x) = F1(x) and F ∗(y) = F1(y), so F ∗(y) = F1(y) ≥ F1(x) = F ∗(x).

Case 2.1.8. Suppose F2(x) > F1(x) ≥ F (x) and F1(y) > F2(y) ≥ F (y).
Then F ∗(x) = F1(x) and F ∗(y) = F2(y), so F ∗(y) = F2(y) ≥ F2(x) > F1(x) =
F ∗(x).

This exhausts the sub-cases since a) sub-cases with F (x) in the middle (e.g.,
with F1(x) > F (x) > F2(x)) are ruled out by Case 2 and b) switching the order
of F1(x) and F2(x) is just a matter of relabeling. Hence, F ∗ is non-decreasing.
□

2. F ∗ is right-continuous,

Note that min{F1(t), F2(t)} and max{F1(t), F2(t)} are each right-continuous
since F1 and F2 are each right-continuous. Fix any x ∈ R.
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Case 2.2.1. Suppose F (x) < F1(x) or F (x) < F2(x). Without loss of gener-
ality, suppose F (x) < F1(x). Then there exists δ > 0 such that for all t such
that x < t < x + δ, F (t) < F1(t). Hence, F ∗(t) = min{F1(t), F2(t)} for all
t ∈ [x, x+ δ), and F ∗ is right-continuous at x.

Case 2.2.2. Suppose F (x) > F1(x) or F (x) > F2(x). The argument follows
as in Case 2.2.1.

Case 2.2.3. Suppose F (x) = F1(x) = F2(x). For any t, F ∗(t) = min{F1(t), F2(t)}
or F ∗(t) = max{F1(t), F2(t)}. Moreover, limt→x+ min{F1(t), F2(t)} = limt→x+ max{F1(t), F2(t)} =
F (x) = F ∗(x). Hence, F ∗ is right-continuous at x. □

3. limx→−∞ F ∗(x) = 0 and limx→∞ F ∗(x) = 1

Since for every x ∈ R, F ∗(x) = F1(x) or F ∗(x) = F2(x), and moreover
limx→−∞ F1(x) = limx→−∞ F2(x) = 0 and limx→∞ F1(x) = limx→−∞ F2(x) =
1, the result follows. □

We would now like to show that F ∗ ̸= F1. Suppose by contradiction F ∗ = F1. Then
F1 is everywhere weakly closer to F than F2, and in some places strictly closer.
Since F , F1, and F2 are right-continuous, this implies W1(F, F1) < W1(F, F2), a
contradiction.

Now, since F ∗ ∈ FCDF is everywhere weakly closer to F than F1, and in some
places strictly closer, and since F , F1, and F ∗ are right-continuous, W1(F, F

∗) <
W1(F, F1) = W1(F, F2), contradicting that F1 and F2 are best approximations of F
from FCDF. ■
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