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Abstract

An individual has preferences over experiences. I present axioms which
are necessary and sufficient for the existence of an experienced utility (XU)
representation in which the utility of an experience is equal to the integral of
instantaneous utility over time. I propose a normative principle which states
that what is best for society is what an ethical observer would most prefer if
they were to live every life once. I call this the LELO principle. An ethical
observer that respects LELO acts as if they seek to maximize the total XU
across individuals. That is, LELO implies utilitarianism with respect to some
utility representation and that representation is XU.

1 Introduction

Early economists assumed as primitive a cardinal utility function capturing an in-
dividual’s intensity of preference.1 Utilitarian philosophers assume as primitive a
similar utility function capturing pleasure, happiness, or satisfaction of desire. But
there exist no rigorous foundations for either. It is not clear how to construct these
functions nor precisely what they capture. I propose an axiomatic theory of expe-
rienced utility, which simultaneously produces a theory of preference intensity over
alternatives and a theory of instantaneous utility experienced over time, uniting and
grounding these two concepts.

The main idea is simple. I consider alternatives as being experienced over time, and
I consider preferences over these experiences. I characterize preferences for which
there exists an experienced utility (XU) representation in which the utility of an
experience is equal to the integral of instantaneous utility over time. By leveraging
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1Later, intensity of preference was eschewed in favor of purely ordinal preference.
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an individual’s ability to compartmentalize an otherwise indivisible alternative into
separate experiences, I am able to extract her intensity of preference at each moment
in time and for the alternative overall.

I propose a normative principle which states that what is best for society is what an
ethical observer would most prefer if they were to live every life once. I call this the
LELO principle. I consider a social planner who respects LELO. Such a planner’s
preference over alternatives is represented by the sum of the experienced utilities
across individuals. That is, LELO implies utilitarianism with respect to some utility
representation and that representation is XU.

To understand the basic approach, consider the following simple example. Let X =
{a, b} be a set of alternatives, where a represents an “apple” and b a “banana”.
Standard theory assumes an individual has preferences ⪰ over X, where a ⪰ b is
taken to mean that the individual prefers to consume an apple to a banana. Hence,
a actually represents an experience—the experience of consuming an apple—that
occurs over time. With this in mind, it is natural to consider experiences over
subintervals of time—for instance, the first bite of an apple. Let I be the set of
intervals on [0, 1]. An experience is a pair (x, I), where x is an alternative and
I is an interval. Suppose it takes two minutes to eat an apple. Then (a, [0, 1))
is the complete experience of eating an apple, (a, [0, .5)) is the experience of just
the first minute, and (a, [.5, 1)) is the experience of just the second.2 Within this
framework, standard theory assumes an individual has preferences over complete
experiences. This reveals the order of her preference on X, but not the intensity.
Suppose instead that an individual has preferences ⪰ over (all) experiences X × I.
Such preferences provide enough information to construct an intensity of preference
on X. In particular, I present four axioms that are necessary and sufficient for
the existence of an XU representation U(x, I) =

∫
I vx(t) dt, where vx : [0, 1] → R

is an instantaneous utility function for each alternative capturing the individual’s
intensity of preference at each moment in time. The representation is unique up to
a positive scalar, i.e. U is a ratio scale.3

2See Section 3 for a more precise definition of an experience.
3Ũ is another XU representation if and only if there exists an α > 0 such that Ũ = αU .
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Figure 1: The experienced utility of (x, I) is given by the area in green.

In a ratio scale representation, utility signs and ratios are meaningful.4 That is, they
convey something explicit about the primitive. Suppose that consuming an apple
gives positive experienced utility, i.e. U(a, [0, 1)) > 0. This means that (a, [0, 1)) ≻
(a, [0, 0)). The experience of consuming an apple is better than experiencing nothing.
Suppose in addition that consuming a banana gives half the experienced utility of
consuming an apple, i.e. .5U(a, [0, 1)) = U(b, [0, 1)). Given U ’s integral form, there
exists a k ∈ (0, 1) such that U(a, [0, k)) = U(a, [k, 1)) = .5U(a, [0, 1)). That is, the
experience of consuming an apple can be cut in “half”, not by time (or volume),
but by preference. For instance, maybe the first 30 seconds of consuming an apple
is equally as good as the final 90. Then k = .25. A banana is “half as good”
as an apple means that “half” the experience of an apple, by preference (the first
30 or final 90 seconds), is indifferent to the complete experience of a banana, i.e.
(a, [0, .25)) ∼ (a, [.25, 1)) ∼ (b, [0, 1)).
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Figure 2: The area in red, orange, and yellow are equal. The banana (right) gives
half the utility of the apple (left). Half the experience of the apple, by preference,
is indifferent to the complete experience of the banana.

4Comparisons of utility levels (ordinal comparisons) and differences (cardinal comparisons) are
meaningful as well.
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Notice that the primitive (preferences over experiences) contains no notion of sign
or intensity of preference. Nevertheless, the representation reveals an intuitive and
consistent way to deduce such characteristics from the primitive. That is, the repre-
sentation provides an intuitive way to define what it means to have (signed) inten-
sities of preference, and the axioms provide sufficient conditions for such properties
to exist and be internally consistent.5

The key axiom giving rise to this representation is temporal monotonicity. The term
was introduced in Kahneman et al. (1993) as a normative principle for evaluating
experiences and states that “adding moments of pain to the end of an episode can
only make the episode worse, and that adding moments of pleasure must make it
better.” The axiom is a formalization of this notion. It states that for any interval
I = I1 ∪ I2, where I1 and I2 are disjoint, and J = J1 ∪ J2, where J1 and J2 are
disjoint, if (x, I1) is preferred to (y, J1) and (x, I2) is preferred to (y, J2), then (x, I)
is preferred to (y, J). For example, if the first 30 seconds of consuming an apple
is preferred to the first minute of consuming a banana,6 and the last 90 seconds of
consuming an apple is preferred to the last minute of consuming a banana, then
it must be that the complete experience of consuming an apple is preferred to the
complete experience of consuming a banana.

The rest of the paper is organized as follows. Section 2 provides some background
and related literature. Section 3 considers preferences over experiences with a single
alternative. Section 4 considers preferences over experiences with an arbitrary set
of alternatives. Section 5 considers preferences over collections of experiences with
arbitrary alternatives. Section 6 uses the theory developed in Section 5 as a foun-
dation for utilitarianism. Section 7 concludes. Appendix A defines a formal theory
of measurement. Appendix B elaborates on the interpretation of preferences over
experiences. Appendix C contains all proofs.

2 Background and Related Literature

A cardinal utility function capturing intensity of preference was once considered a
primitive in economic theory. Later, economists realized that ordinal preferences
were sufficient for much of their analyses and abandoned cardinal utility as a prim-
itive in favor of preferences. A utility function was then simply taken to be a
numerical representation of preferences, and so only contained ordinal information.
With the onset of expected utility, cardinal utility found its way back into economic
theory. This time, though, utility itself was not assumed to be primitive. Like
ordinal utility, expected utility is merely a representation of preferences.

5Given the axioms, the sign of an experience and the intensity of preference between a pair of
experiences is uniquely identified by ⪰.

6Suppose it takes two minutes to eat a banana.
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How can a representation of ordinal preferences contain cardinal meaning? First,
preferences are expanded onto a richer domain (from the set of alternatives to the set
of probability distributions over alternatives). Second, a particular mapping from
utilities on the original domain (Bernoulli utilities) to utilities on the expanded do-
main (von-Neumann-Morgenstern utilities) is posited—the von-Neumann-Morgenstern
utility of a probability distribution over alternatives should be the probability weighted
sum of the Bernoulli utilities of the alternatives. Given such a representation, com-
parisons of Bernoulli utility differences are meaningful. If u(a)−u(b) > u(c)−u(d),
then .5u(a) + .5u(d) > .5u(b) + .5u(c) and so a 50/50 lottery between a and d is
strictly preferred to a 50/50 lottery between b and c.

Notice that the meaning captured by a Bernoulli utility function differs from the
meaning primitive cardinal utility functions were assumed to capture. In particular,
a Bernoulli utility function captures an individual’s attitude to risk, while a primitive
cardinal utility function captures an individual’s intensity of preference. Equating
the two is a longstanding misconception in economic theory, plainly identified by
Luce and Raiffa (1957) as “Fallacy 3” in their list of common misinterpretations
of expected utility. A similar story can be told when expanding the domain of
preferences from a set of alternatives to the set of streams of alternatives7 (as in
intertemporal choice, see Koopmans (1960); Bleichrodt, Rohde and Wakker (2008))
or to the set of alternatives and money (as in willingness to pay). Both result in
a cardinal representation on the original preference domain that captures mean-
ing about the richer domain (and hence does not capture preference intensity per
se).

A final approach expands the domain of preferences from a set of alternatives to
the set of pairs of alternatives (see Suppes and Winet (1955); Köbberling (2006)).
Preferences over this richer domain are taken to represent preferences over preference
differences. That is, ab ⪰ cd means that the difference in preference between a
and b is larger than the difference in preference between c and d. This results
in a cardinal representation on alternatives that, indeed, can be taken to capture
preference intensity. But this is not so different from assuming cardinal utility itself
as primitive, and the issues with doing so here are the same. In many ways, this
is the crux of what is objectionable about taking cardinal utility as primitive—that
comparisons of preference differences are considered meaningful at the outset.

This paper proposes the first theory of cardinal utility capturing preference intensity
that does not take preference intensity itself as primitive. By expanding the domain
of preferences from a set of alternatives to the set of alternatives and intervals (inter-

7Notice the difference between a stream of alternatives and alternatives which are experienced
over time. For both, let time be continuous but finite in length. Let X be an arbitrary set of
alternatives. A stream of alternatives maps points in time to alternatives. In intertemporal choice,
an individual has preferences over all such functions X [0,1]. An experience is an alternative and an
interval of time. Here, an individual has preferences over all such pairs X × I.
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preted as experiences), I am able to construct an experienced utility representation
that captures what it means for an individual to have intensity of preference.

The idea of experienced utility is not new. Kahneman, Wakker and Sarin (1997)
were first to introduce the term, but the idea goes back to Edgeworth’s hedonometer.
In his 1881 book Mathematical Psychics, Edgeworth (p. 101) proposed the idea of
measuring pleasure continuously over time: “let there be granted to the science
of pleasure what is granted to the science of energy; to imagine an ideally perfect
instrument, a psychophysical machine, continually registering the height of pleasure
experienced by an individual. . . . the quantity of happiness between two epochs is
represented by the area contained between the zero-line, perpendiculars thereto at
the points corresponding to the epochs, and the curve traced by the index.” This
hypothetical instrument came to be known as a “hedonometer” and the notion of
instantaneous pleasure as “hedonic flow”. Despite being introduced over a century
ago, no formal theory of measurement8 of hedonic flow has yet been proposed.
Without a formal theory, such a measure has no meaning. In other words, hedonic
flow is a conjecture: the conjecture that there exists a measure assigning numbers
to instants of time such that the precise meaning we prescribe to the measure allows
it to be intuitively understood as “height of pleasure”. This paper proposes such a
theory.

time

pleasure

0
I

Figure 3: The quantity of happiness of I is given by the area in green.

3 A Theory of Measurement of Hedonic Flow

In this section I consider preferences over experiences with a single alternative,
yielding a theory of measurement of instantaneous preference intensity or hedonic
flow. The primitive is a tuple (I,⪰), where I is the set of all left-closed, right-open
intervals9 on [0, 1] and ⪰ is a preference relation on I. For any I, J ∈ I such that

8See Appendix A for a discussion of measurement theory.
9I consider left-closed, right-open intervals so that adjacent intervals are disjoint and the union

of adjacent intervals is itself an interval.
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I and J are adjacent (and hence also disjoint), define I ⊕ J ≡ I ∪ J . Notice that I
is closed under ⊕.

An alternative is a complete description of the state of the world over a finite period
of time, represented by [0, 1). An experience is the complete description of the state
of the world over any subinterval of [0, 1). Crucially, these descriptions include the
state of mind of the individual who experiences it. For example, if [0, 1) is the
experience of consuming an apple, then it must specify how hungry the individual
feels at each point in time. The relation ⪰ captures the individual’s preferences for
experiencing these states as they are described. For instance, if [0, .5) is the first
minute of eating an apple, during which time the individual feels hungry, and [.5, 1)
is the experience of the second minute of eating an apple, during which time the
individual feels full, then [0, .5) ≻ [.5, 1) means that the individual would prefer to
experience the state of the world [0, .5), so described, to [.5, 1).10

The first axiom simply identifies the primitive.

Axiom 1.1 (Rationality). An individual has preferences ⪰ over experiences I.

It will prove useful to represent intervals as points in R2, where the interval [x, y)
is represented by the point (x, y). I is then represented by the set of points above
the diagonal in the unit square. As in consumer theory, indifference curves will play
an important role in the analysis. However, they will not look anything like the
classical indifference curves from consumer theory.
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Figure 4: I is represented by the shaded triangle. Note that each point on the diag-
onal represents the (same) empty interval. Consider a preference on I represented
by U(I) =

∫
I v(t) dt, with v shown on the right. Some indifference curves of these

preferences are plotted on the left.

10See Appendix B for an elaboration on the interpretation of preferences over experiences.
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The second axiom provides the conceptual backbone for the representation theorem.

Axiom 1.2 (Temporal Monotonicity). For any I, J,K,L ∈ I, if I ⊕K and J ⊕ L
are defined, then I ⪰ J and K ⪰ L implies I ⊕K ⪰ J ⊕ L. Moreover, I ≻ J and
K ⪰ L implies I ⊕K ≻ J ⊕ L.

In other words, if I is preferred to J , and we concatenate to I an experience which is
preferred to the experience we concatenate to J , then the preference is unchanged.
A common concern is that by concatenating I to K, we change the experience of
the “K portion” of I ⊕K. But this is not the case. Since the individual’s state of
mind is part of the description of the experience itself, it remains the same whether
she is experiencing I only, K only, or I ⊕K.

The third axiom will be familiar from consumer theory. In fact, it is precisely the
same condition.

Axiom 1.3 (Continuity). For any I, J ∈ I, if I ≻ J , then there exists an ε > 0
such that if I ′ ∈ I is less than ε distant from I and J ′ ∈ I is less than ε distant
from J , then I ′ ≻ J ′.

To make this precise, I must clarify how to measure distance between intervals.
In consumer theory, we often use Euclidean distance. This (and many other no-
tions) would suffice, however the following measure of distance has a nice interpre-
tation in our setting. Define the distance between I = [I0, I1) and J = [J0, J1) by
max{|I0 − J0|, |I1 − J1|}. Under this definition, continuity states that small changes
in the interval, defined as small changes to the start and end time, result in small
changes in preference. In R2, the set of points less than ε distant from I forms
a square of width 2ε around I (instead of a circle of radius ε with Euclidean dis-
tance).

The final axiom is technical and will take some effort to develop. The following
objects are depicted graphically in Figure 5. Given a start time a, let Yxy(a) be the
set of all end times b such that (a, b) ∼ (x, y). Given an end time b, let Xxy(b) be
the set of all start times a such that (a, b) ∼ (x, y). Let Φxy be the set of indifference
curves through the point (x, y) that are closest to the horizontal line y. Let Γxy be
the set of inverse indifference curves through the point (x, y) that are closest to the
vertical line x.11

11Formally, let N(t, w) ≡ [t−w, t+w]∩ [0, 1] denote a neighborhood of width w around t within
[0, 1]. For any x < y, let Yxy(a) ≡ {b ∈ [0, 1] : (x, y) ∼ (a, b)} and Φxy ≡ {ϕxy ∈ [0, 1][0,1] :
∃w > 0, ∀a ∈ N(x,w), ϕxy(a) ∈ Yxy(a) and ̸ ∃ b ∈ Yxy(a), |y − b| < |y − ϕxy(a)|}. Similarly, let
Xxy(b) ≡ {a ∈ [0, 1] : (x, y) ∼ (a, b)} and Γxy ≡ {γxy ∈ [0, 1][0,1] : ∃w > 0, ∀b ∈ N(y, w), γxy(b) ∈
Xxy(b) and ̸ ∃ a ∈ Xxy(b), |x− a| < |x− γxy(b)|}.
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Figure 5: Left: For each a ∈ {a0, x, a1, a2}, the set of points vertically above denotes
Yxy(a) and the green point denotes ϕ̂xy(a) for some ϕ̂xy ∈ Φxy. Right: For each
b ∈ {b0, b1, y, b2}, the set of points horizontally across denotes Xxy(b) and the green
point denotes γ̂xy(b) for some γ̂xy ∈ Γxy.

Definition 1.1. Preferences ⪰ are non-trivial if there exist I, J ∈ I such that
I ≻ J .

Axiom 1.4 (Smoothness). If preferences are non-trivial,12 there exists τ ∈ (0, 1)
such that for all x ∈ [0, τ) and y ∈ (τ, 1], there exist continuous indifference curves
ϕxτ (·) ∈ Φxτ and γτy(·) ∈ Γτy such that the function v̂ : [0, 1] → R defined by

v̂(t) =


ϕ′
tτ (t) if 0 ≤ t < τ

1 if t = τ
γ′τt(t) if τ < t ≤ 1

is continuous and crosses zero finitely many times.13

This is a bit of a mouthful. There exists a line from (0, τ) to (τ, τ) to (τ, 1) for
some τ ∈ (0, 1), such that for each point (x, τ) on the horizontal portion of the line,
there exists an indifference curve ϕxτ (·) ∈ Φxτ closest to τ that is continuous in a
neighborhood of and differentiable at (x, τ), and for each point (τ, y) on the vertical
portion of the line, there exists an inverse indifference curve γτy(·) ∈ Γτy closest to τ
that is continuous in a neighborhood of and differentiable at (τ, y). Moreover, as we

12The subsequent condition implies that preferences are non-trivial.
13Let Z = {z ∈ [0, 1] : v̂(z) = 0 and ∄δ > 0, ∀z′ ∈ (z − δ, z + δ), v̂(z′) = 0}. Then v̂ crosses zero

finitely many times if Z is finite.
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trace along the line, the slopes of these indifference curves must form a continuous
function v̂ : [0, 1] → R that crosses zero finitely many times, and v̂(τ) = 1.

What does the axiom say about the underlying primitive? Consider the point (x, y).
Suppose I perturb the start time by ε. To keep the individual indifferent, I must then
perturb the end time to ϕxy(x+ ε). Requiring continuity of ϕxy in a neighborhood
of x means that small changes to the start time around x require small changes to
the end time to keep the individual indifferent. Requiring differentiability of ϕxy at
x means that small changes to x require directly proportional changes to y to keep
the individual indifferent. Similarly for γxy, except with the start and end times
reversed. Continuity of v̂ means that small shifts in the interval of consideration
along the line connecting (0, τ), (τ, τ), and (τ, 1) result in small changes in these
slopes, and since v̂(τ) = 1, the slopes around the empty interval [τ, τ) should be
close to one, capturing the idea that moments in time arbitrarily close together are
arbitrarily close in preference. Moreover, v̂ cannot be infinitely ‘squiggly’, as it must
cross zero only finitely many times. This is depicted in Figure 6.

1

1

0

τ

Figure 6: The line connecting (0, τ), (τ, τ), and (τ, 1) and the indifference curves
through several points on the line. Axiom 1.4 requires that the slopes of these
indifference curves form a continuous function v̂ (that crosses zero finitely many
times and satisfies v̂(τ) = 1).

It is apparent that the axiom does not impose any substantial or controversial condi-
tions on the individual’s preferences over experiences and that it is simply a technical
condition arising from the smooth structure of the representation we desire. To be
clear, we seek a representation of the form U(I) =

∫
I v(t) dt, and for simplicity and

elegance I, the researcher, choose to require that v be sufficiently “nice”. In par-
ticular, I require that it be continuous and that it cross zero finitely many times.14

14I require the latter condition because it is helpful for the proof as I have constructed it, and I
feel it is substantively innocuous. It may be possible to prove the corresponding theorem without
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Given this, Axiom 1.4 is immediately necessary. If a representation of the form
U(I) =

∫
I v(t) dt exists and v(τ) ̸= 0,15 then the slope of the indifference curve

at (x, τ) is v(x)/v(τ) and the inverse slope of the indifference curve at (τ, y) is
v(y)/v(τ). Hence v̂ = v/v(τ), and the axiom follows.

We are now ready for the representation theorem.

Definition 1.2. A preference relation ≿ on a set X is represented by a utility
function u : X → R if for any x, y ∈ X, x ≿ y ⇐⇒ u(x) ≥ u(y).

Theorem 1. Axioms 1.1, 1.2, 1.3, and 1.4 hold if and only if there exists an
instantaneous utility function v : [0, 1] → R that is continuous and crosses zero
finitely many times, such that ⪰ is represented by the experienced utility function
U : I → R given by

U(I) =

∫
I
v(t) dt.

Moreover, Ũ(I) =
∫
I ṽ(t) dt is another representation if and only if ṽ = αv for some

α > 0.

4 A Theory of Measurement of Preference Intensity

In this section I consider preferences over experiences with an arbitrary set of alter-
natives, yielding a theory of measurement of preference intensity. The primitive is a
tuple (X ×I,⪰), where X is an arbitrary set of alternatives, I is the set of all left-
closed, right-open intervals on [0, 1], and ⪰ is a preference relation on X×I. For any
x ∈ X and I, J ∈ I such that I and J are adjacent, define (x, I)⊕(x, J) ≡ (x, I∪J).
Notice that X × I is closed under ⊕.

As before, an alternative is a complete description of the state of the world over
a finite period of time, and, given an alternative, an experience is the complete
description of the state of the world over any subinterval of time. In the previous
section we considered a single alternative, so an experience was simply an interval
I ∈ I. Now, we consider an arbitrary set of alternatives, so an experience is a pair
(x, I) ∈ X × I specifying both an alternative and an interval.

We seek the same representation as in Theorem 1, except with an instantaneous util-
ity function vx for each alternative x ∈ X. It is worth pointing out that this result
does not follow immediately from Theorem 1—in particular, because an experience
cannot span multiple alternatives. For example, the individual cannot compare the
second minute of eating an apple and the first minute of eating a banana to the

this condition.
15If such a representation exists and preferences are non-trivial, then there exists τ ∈ (0, 1) such

that v(τ) ̸= 0.
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complete experience of eating an apple.16 Figure 7 contains a simple illustration of
this point.

1

1

0

.5

.5

Figure 7: Let X = {x, y} and suppose we “stack” the timelines [0, 1]x and [0, 1]y in
hopes of applying Theorem 1. That is, on the new timeline (x, [a, b)) is represented
by [a/2, b/2) and (y, [c, d)) is represented by [.5 + c/2, .5 + d/2). With preferences
over such intervals, we could apply Theorem 1 and be done; but we do not have
preferences over all such intervals. We have preferences only over points in the green
triangles.

While not immediate, the desired result holds (with a small caveat). The following
axioms are simple extensions of the original axioms to this environment, along with
a (trivial) consistency axiom.

Axiom 2.1 (Rationality). An individual has preferences ⪰ over experiences X×I.

Axiom 2.2 (Temporal Monotonicity). For any x, y ∈ X and I, J,K,L ∈ I, if
(x, I⊕K) and (y, J⊕L) are defined, then (x, I) ⪰ (y, J) and (x,K) ⪰ (y, L) implies
(x, I ⊕ K) ⪰ (y, J ⊕ L). Moreover, (x, I) ≻ (y, J) and (x,K) ⪰ (y, L) implies
(x, I ⊕K) ≻ (y, J ⊕ L).

Axiom 2.3 (Continuity). For any (x, I), (y, J) ∈ I, if (x, I) ≻ (y, J), then there
exists an ε > 0 such that if I ′ ∈ I is less than ε distant from I and J ′ ∈ I is less
than ε distant from J , then (x, I ′) ≻ (y, J ′).

Axiom 2.4 (Smoothness). For each x ∈ X, ⪰ over experiences containing x satisfies
Axiom 1.4.

16We will consider such comparisons in Section 5.
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Axiom 2.5 (Consistent Null Sets). Empty experiences are indifferent across alter-
natives. That is, for any x, y ∈ X, (x, ∅) ∼ (y, ∅).

The last axiom is, in a sense, just semantics. We would like to consider (x, ∅) and
(y, ∅) to be identical experiences, since both represent the lack of an experience.
However, since they are not formally equivalent, we must assume indifference ex-
plicitly.17

These axioms give rise to the desired representation. However, for a certain class of
preferences, the representation is not a ratio scale.

Definition 2.1. A preference ⪰ over X × I is diametric if for each alternative
x ∈ X, either x is uniformly positive, i.e. (x, I) ⪰ (x, ∅) for all I ∈ I, or it is
uniformly negative, i.e. (x, I) ⪯ (x, ∅) for all I ∈ I, and there exists at least one
uniformly positive and uniformly negative alternative.

Let X+ = {x ∈ X : ∃I ∈ I, (x, I) ≻ (x, ∅)} denote the set of alternatives with some
positive experience and X− = {x ∈ X : ∃I ∈ I, (x, I) ≺ (x, ∅)} denote the set of
alternatives with some negative experience. Note that ⪰ is diametric if and only if
X+ and X− are non-empty and disjoint.

Theorem 2. Axioms 2.1, 2.2, 2.3, 2.4, and 2.5 hold if and only if there exists a
set V = {vx}x∈X of instantaneous utility functions vx : [0, 1] → R, each of which is
continuous and crosses zero finitely many times, such that ⪰ is represented by the
experienced utility function U : X × I → R given by

U(x, I) =

∫
I
vx(t) dt.

If preferences are diametric, V + = {vx}x∈X+ and V − = {vx}x∈X− are independently
ratio-scale.18 Otherwise, V is ratio-scale.

The inability to pin down a ratio scale under diametric preferences stems from the
lack of non-trivial comparisons between alternatives of different sign. Suppose x is
uniformly positive and y is uniformly negative. Then (x, I) ⪰ (y, J) for all I, J ∈ I
and strictly if I or J is non-empty. Hence, we may scale vx and vy independently
without changing the underlying preference. This is not the case if for some Î ∈ I,
(x, Î) ≺ 0 (so that preferences are not diametric), since changing the scale of vx
independently of vy changes the ranking between (x, Î) and (y, J), for J non-empty.
Furthermore, this is not the case if the individual can rank collections of experiences
across alternatives, since changing the scale of vx independently of vy changes the

17In the setting of Theorem 1, the analogous axiom is [t, t) ∼ [t′, t′) for any t, t′ ∈ [0, 1]. But this
is not necessary since [t, t) = [t′, t′) = ∅, i.e. the objects we would like to be identical are identical.

18Ũ(x, I) =
∫
I
ṽx(t) dt is another representation if and only if for some α1, α2 > 0, ṽx = α1vx for

all x ∈ X+ and ṽx = α2vx for all x ∈ X−.
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ranking between the collection “(x, I)+(y, J)” and the empty experience. I consider
such preferences next.

5 A(nother) Theory of Measurement of Preference In-
tensity

In this section I consider preferences over collections of experiences with an arbi-
trary set of alternatives, yielding a theory of measurement of preference intensity.
Formally, I consider preferences over multisets19 of experiences (allowing for repe-
titions). Denote the set of all finite multisets containing only elements of X × I
by M(X × I). When the meaning is clear from context, I will sometimes write
(x, I) to mean the singleton {(x, I)}. The primitive is a tuple (M(X × I),⪰),
where ⪰ is a preference relation on M(X × I). Multisets have a natural con-
catenation operation commonly denoted by +. For any A,B ∈ M(X × I), define
A + B as the multiset with multiplicities summed across multisets. For exam-
ple, {(a, I), (b, J)} + {(b, J), (c,K)} = {(a, I), (b, J), (b, J), (c,K)}. Similarly, de-
fine A − B as the multiset with multiplicities subtracted across multisets, so that
{(a, I), (b, J), (b, J), (c,K)}−{(b, J), (c,K)} = {(a, I), (b, J)}. Notice thatM(X×I)
is closed under +.

We seek a representation in which the experienced utility of a multiset is given by
the sum of the experienced utilities of its elements. The following axioms are simple
extensions of those in Theorem 2 to this environment, along with an additional
(trivial) consistency axiom.

Axiom 3.1 (Rationality). An individual has preferences ⪰ over M(X × I).

Axiom 3.2 (Monotonicity). For any A,B,C,D ∈ M(X ×I), if A ⪰ B and C ⪰ D
then A+ C ⪰ B +D. Moreover, if A ≻ B and C ⪰ D then A+ C ≻ B +D.

In the previous two sections, we considered preferences over experiences and used
interval concatenation ⊕ to concatenate two adjacent experiences into a third expe-
rience. Here, we consider preferences over collections of experiences and use multiset
concatenation + to concatenate any two collections into a third collection. Axiom 3.2
reflects this change. While Axioms 1.2 and 2.2 have a clear temporal component,
Axiom 3.2 does not. Hence, I refer to it simply as monotonicity. It states that if
a collection of experiences A is preferred to B, and a collection of experiences C

19A multiset is a collection of objects in which order is ignored (like a set) but multiplicity is
not (unlike a set). I denote a multiset by {·}. Then {a, b} = {b, a} ̸= {a, a, b, b}. The cardi-
nality of a multiset is equal to the sum of the multiplicities of its elements, e.g. |{a, a, b, b}| = 4.
Notice that with standard sets, {(x, [0, .5))} is equal to {(x, [0, .5)), (x, [0, .5))} is not equal to
{(x, [0, .5)), (x, [0, .50 . . . 01))}. In this sense, sets allow us to get arbitrarily close to a repeated
experience, without allowing the repeated experience itself.
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is preferred to D, then the combination of the two preferred collections A + C is
preferred to the combination of the other two, B+D. When paired with Axiom 3.6,
Axiom 3.2 implies Axiom 2.2.20

Axiom 3.3 (Continuity). For any A,B ∈ M(X × I), if A ≻ B, then for any
(x, I) ∈ A and (y, J) ∈ B there exists an ε > 0 such that if I ′ ∈ I is less than ε
distant from I and J ′ ∈ I is less than ε distant from J , then A− (x, I) + (x, I ′) ≻
B − (y, J) + (y, J ′).

Axiom 3.4 (Smoothness). For each x ∈ X, ⪰ over singletons containing x satisfies
Axiom 1.4.

Axiom 3.5 (Consistent Null Sets). Empty experience singletons are indifferent
across alternatives. That is, for any x, y ∈ X, {(x, ∅)} ∼ {(y, ∅)}.

Axiom 3.6 (Consistent Concatenations). For any x ∈ X, if I, J ∈ I are adjacent,
then {(x, I)}+ {(x, J)} ∼ {(x, I ⊕ J)}.

As before, the final axiom is essentially just semantics. We would like to consider
{(x, I)} + {(x, J)} and {(x, I ⊕ J)} to be the same object, but since they are not
formally equivalent, we must assume indifference explicitly. We can view this as
imposing consistency between multiset-concatention + and interval-concatenation
⊕.

These axioms yield the desired result (even if preferences are diametric).

Theorem 3. Axioms 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 hold if and only if there exists
a set V = {vx}x∈X of instantaneous utility functions vx : [0, 1] → R, each of which
is continuous and crosses zero finitely many times, such that ⪰ is represented by the
experienced utility function U : M(X × I) → R given by

U(A) =
∑

(x,I)∈A

∫
I
vx(t) dt =

∑
(x,I)∈A

U(x, I).

Moreover, V is ratio-scale.

6 A Foundation for Utilitarianism

In this section, I use the framework of the previous section to build a foundation for
utilitarianism. Broadly speaking, utilitarianism states that a social state is ethically

20Let I, J and K,L be adjacent intervals in I. For any x, y ∈ X, suppose (x, I) ⪰ (y, J) and
(x,K) ⪰ (y, L). Then {(x, I)} + {(x,K)} ⪰ {(y, J)} + {(y, L)} by Axiom 3.2 and (x, I ⊕ K) ⪰
(x, J ⊕ L) by Axiom 3.6.
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preferred to another if and only if it produces greater total “utility”, where total
utility is the sum of individual utilities, and individual utility represents pleasure,
happiness, or satisfaction of desire. But where exactly do these utilities come from?
What precisely do they capture? And what does it mean to add them across indi-
viduals? A formal theory of utilitarianism must provide a theory of measurement
of individual utilities (i.e., a theory of measurement of individual pleasure, etc.21)
and justify why a social planner should seek to maximize their sum.

Suppose we have a set of individuals, each with experienced utility preferences over
some set of social states. Individual preferences over experiences provide us with
preference intensities, but such intensities are not interpersonally comparable. We
can say that individual i likes an apple three times more than a banana and in-
dividual j likes an apple two times more than a banana. However, we cannot say
that i likes an apple more than j likes an apple. To make such comparisons, an
individual must be able to put themselves in someone else’s shoes. This is not as
far of a conceptual leap as it may seem. A complete description of an experience
for individual i consists of a complete description of the state of the world over
some interval of time. Implicitly, individual i must exist in that description and the
experience is lived through her eyes. An experience in someone else’s shoes consists
of a complete description of the state of the world over an interval of time and a
specification of the individual whose eyes through which it is lived. Indeed, eating
an apple as two different individuals is similar to, if not the same as, eating an apple
in two different states of mind. Hence, eating an apple as i and eating an apple
as j are experiences like any other. Preferences over such experiences give rise to
interpersonally comparable preference intensities.

Let Ω be a finite set of social states and N be a finite set of individuals. Consider
a social planner with preferences over Ω × N , where (ω, i) is interpreted as the
(complete) experience of social state ω through the eyes of individual i. Preferences
of this form are referred to as extended sympathy preferences.22 Notice that if utility
is a representation of individual preferences over Ω, then a social planner can make
interpersonal comparisons of utility levels if and only if she has extended sympathy
preferences.23 I consider a social planner with extended sympathy preferences over
(collections of) the experiences of her citizens Ω×N ×I. The statement (ω, i, I) ≻
(ω′, j, J) then means that the experience of state ω through the eyes of individual

21Notice that maximizing the sum of arbitrary indexes is not necessarily utilitarianism. For
example, a theory that defines individual utilities by total calories consumed (and justifies why a
social planner should maximize their sum) would likely not be considered a theory of utilitarianism,
since most would not consider calories consumed a measure of individual pleasure, etc. Similarly,
a theory that justifies some ordering of states and then constructs individual indexes precisely so
their sum represents this ordering would not be considered a theory of utilitarianism for the same
reason.

22See Harsanyi (1955); Arrow (1977).
23In particular, ui(a) > uj(a) means that (a, i) ≻ (a, j).
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i over the duration I is preferred to the experience of state ω′ through the eyes of
individual j over the duration J . Formally, the primitive is a tuple (M(Ω×N×I),⪰
), where ⪰ is a preference relation on M(Ω×N × I).

An ethical preference ⪰∗ is a preference relation on social states Ω. The LELO
principle is a normative principle which states that what is best for society is what
an ethical observer would most prefer if they were to live every life once.

The LELO (Live Every Life Once) Principle. A state ω is ethically preferred
to another ω′ if and only if the complete experience of ω through the eyes of each
individual is preferred to that of ω′. That is,

ω ⪰∗ ω′ ⇐⇒
{
(ω, i, [0, 1))

}
i∈N

⪰
{
(ω′, i, [0, 1))

}
i∈N

.

Hence, an ethical social planner who respects LELO ranks social states as if she were
to experience them through the eyes of each of her citizens. Given this postulate,
the following is an immediate implication of Theorem 3.

Corollary 1. Let X = Ω×N . Suppose Axioms 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6. An
ethical preference ⪰∗ on Ω that respects LELO is utilitarian in experienced utilities
on M(Ω×N × I). That is,

ω ⪰∗ ω′ ⇐⇒
∑
i∈N

U(ω, i, [0, 1)) ≥
∑
i∈N

U(ω′, i, [0, 1)),

where U({(ω, i, [0, 1))}i∈N ) =
∑

i∈N
∫ 1
0 vωi(t) dt =

∑
i∈N U(ω, i, [0, 1)).

This is a formal theory of utilitarianism. Individual “utilities” are defined as the
social planner’s experienced utility of the individual’s experience of the state and are
unique up to a positive scalar. The LELO principle justifies a particular ranking of
social states, and Corollary 1 shows that this ranking is represented by the sum of
individual “utilities”. As Sen (1992, p. 12) points out, “every normative theory of
social arrangement that has at all stood the test of time seems to demand equality
of something.” I provide a foundation of utilitarianism from the premise that each
citizen’s experience should be treated equally.

7 Conclusion

I propose a theory of preference intensity which is built on the idea that the alterna-
tives over which individuals have preferences are experienced over time. Preferences
over such experiences yield a measure of preference intensity equal to the integral
of hedonic flow. Furthermore, I argue that such a measure, when viewed sympa-
thetically through the eyes of some impartial observer, is precisely the definition of
“utility” that utilitarian doctrine fails to specify. In particular, I provide a formal
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theory of utilitarianism built on the principle that the experience of every citizen
should be considered and treated equally.

Appendices

A Measurement Theory

A formal theory of measurement seeks to describe interesting and relevant properties
of a given environment numerically.24 To understand the approach and purpose of
measurement theory, it is helpful to consider a simple example—the measurement of
“length”. Suppose we possess a set of rods. Given any two rods, we may determine
which is longer (or that neither is longer). Furthermore, we may form “composite”
rods by laying end-to-end any number of individual rods and make the same com-
parisons between them. This is a formal description of the environment we seek to
describe, called a primitive, and should be clearly defined and interpretable.25 We
seek to construct a numerical measure, or representation, called “length” assigning
numbers to rods such that 1) for any two rods A and B, A is longer than B if
and only if the length of A is greater than the length of B, and 2) the length of
any composite rod is the sum of the length of the individual rods that comprise
it. Such a measure is not guaranteed to exist. A representation theorem identifies
sufficient (and hopefully necessary) conditions, called axioms, for its existence, and
characterizes the entire set of such representations.

A theory of measurement, including a formal specification of the primitive and a
representation theorem, serves at least three purposes. First, the axioms identify
key properties of the environment that allow for the desired measure to exist. In
the case of length, one of the key properties is monotonicity, which states that for
any rods A, B, and C, if A is longer than B, then the composite rod “A and C” is
longer than “B and C”. Second, the information captured by the measure is clari-
fied precisely through its implications on the primitive. In particular, what does it
mean to say the length of rod A is 2 and the length of rod B is 1?26 Note that if
a particular relationship between measurements tells us something about the rela-
tionship between primitives, then all representations must produce measurements

24See Krantz et al. (1971); Suppes et al. (1989); Luce et al. (1990) for an excellent treatment of
this material.

25That is, we should all agree on what a rod is, what it means for one rod to be longer than
another, and what it means to form a composite rod.

26The length of A is greater than the length of B means that A is longer than B. The length of
A is twice the length of B means the composite rod composed of two Bs is no longer than A, and
vice versa.
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with this relationship.27 Third, the constructed measure is usually far more intuitive
and efficient in describing the relevant properties than the primitive itself. A single
number assigned to each individual rod fully describes an infinite set of comparisons
between composite rods.

B Interpretation of Preferences over Experiences

A formal theory of measurement must have a clearly defined and interpretable primi-
tive. In this paper, the primitive is a set of experiences (or collections of experiences)
and a preference ordering over those experiences. An experience is a complete de-
scription of the state of the world over time. The goal of this section is to clarify
what preferences over experiences are intended to capture, i.e. what it means to
prefer one experience to another.

Different interpretations of preference will result in different interpretations of the
axioms (and hence different conclusions about their sensibility) and different in-
terpretations of the utility representation. I have in mind a very particular in-
terpretation, under which I believe the axioms are sensible and the representation
meaningful. In fact, under virtually any other interpretation, I would not view the
representation as capturing hedonic flow and, likewise, not view the ethical postulate
proposed in Section 6 as ethically desirable.

Interpretation of ⪰. An individual prefers experience A to B if she would prefer
to relive the state of the world described by A to that described by B.

Three points deserve some clarification.

1. The state of the world includes a description of who is reliving it and their state
of mind at each moment in time. Hence, the state of mind of the individual
making the evaluations does not affect the experience.

2. The relived experience does not actually happen—it is only imagined. Hence,
nobody else (other than the individual reliving the experience) is affected.

3. The relived experience is forgotten upon completion.28 Hence, there are no
future repercussions to the individual of reliving an experience. The only effect
is in the moment.

One implication of these properties is that the timing of evaluation should not
affect the individual’s preference. Suppose an individual considered her actions on
a particular day to be morally right at the time, but now views them as morally
wrong. Consider the experience of reliving that day. Since the experience is only

27Since the length of A being twice that of B captures information about the primitive (see
previous footnote), all representations must share this fact.

28Alternatively, the experience is relived at the end of the individual’s life, just after death.

19



imagined (so it affects no one else) and she relives it in her original state of mind,
her present moral views are not relevant.

A second implication of these properties is that there is nothing to be gained or
lost from reliving an experience other than the experience itself. For instance, an
individual cannot relive a day of intense studying in order to better learn the material
in her actual life.

Temporal monotonicity is the key axiom giving rise to the representation. Point 1
is clearly necessary for such an axiom to be justifiable. If the experience did not
include the individual’s state of mind, there would be no difference between the
experience of “the first bite of an apple” and “the last bite of an apple” (assuming
everything else about these bites are the same). That is, the only difference between
the first bite and the last is precisely the individual’s state of mind.

Point 3 is also necessary for the axiom to be justifiable. Suppose Points 1 and 2,
but not 3. Consider the experience of learning a password to some valuable safe.
Learning the first four digits is useless later in one’s actual life, as is learning the
last four digits. But learning all eight digits is very useful.

Point 2, on the other hand, is not necessary for the sensibility of temporal mono-
tonicity. It is, however, necessary to interpret the representation as “hedonic flow”.
Suppose Points 1 and 3, but not 2. Then the individual evaluates experiences given
that everyone will relive it. Hence, she takes into account her moral views at the
time of evaluation, including any altruistic value she places on others. This dras-
tically changes the interpretation of her preference (though it should still satisfy
temporal monotonicity) and the resulting representation.

C Proofs

C.1 Proof of Theorem 1

If preferences are trivial (all experiences are indifferent), then v(t) = 0 for all t
represents preferences and Theorem 1 follows immediately. Henceforth, I assume
preferences are non-trivial. I use (x, y) ∈ [0, 1]2 to represent [x, y) ∈ I and, where
there is no confusion, 0 to denote the empty experience ∅.

Lemma 1 provides us with a helpful trick to switch the “inner coordinates” of a pair
of intervals (for which one is not contained in the another).

Lemma 1. Suppose Axioms 1.1 and 1.2. Then for any 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ 1,

(t1, t2) ⪰ (t3, t4) ⇐⇒ (t1, t3) ⪰ (t2, t4).

Proof. (⇒) By Axiom 1.2, (t1, t2) ⪰ (t3, t4) and (t2, t3) ∼ (t2, t3) implies (t1, t3) ⪰
(t2, t4). (⇐) Suppose by contradiction that (t1, t3) ⪰ (t2, t4) and (t3, t4) ≻ (t1, t2).
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By Axiom 1.2, (t2, t3) ∼ (t2, t3) and (t3, t4) ≻ (t1, t2) implies (t2, t4) ≻ (t1, t3), a
contradiction. ■

Lemma 2 says that each vertical (horizontal) line in the triangle has the same pref-
erence ordering as every other vertical (horizontal) line, and that every vertical
ordering is the opposite of its corresponding horizontal ordering.

Lemma 2. Suppose Axioms 1.1 and 1.2. Then for any 0 ≤ x ≤ y ≤ y′ ≤ z ≤ 1,

(x, y) ⪰ (x, y′) ⇐⇒ (y′, z) ⪰ (y, z).

Proof. By Lemma 1, (x, y) ⪰ (x, y′) if and only if (x, x) ⪰ (y, y′) if and only if
(z, z) ⪰ (y, y′) if and only if (y′, z) ⪰ (y, z). Recall that (x, x) and (z, z) represent
the same empty interval. ■

Define

V̂ (z) =

∫ z

0
v̂(t) dt,

and

Û(x, y) =

∫ y

x
v̂(t) dt = V̂ (y)− V̂ (x).

This will serve as a conjecture for the representation U , which we will construct later.
Lemma 3 says that, at any point (x, y) for which v̂(x) ̸= 0 or v̂(y) ̸= 0, the slope
of the indifference curve through (x, y) generated by Û(x, y) = V̂ (y)− V̂ (x) agrees
with the slope of some indifference curve through (x, y) generated by preferences
⪰.

Lemma 3. Suppose Axioms 1, 2, 3, 4 and that ⪰ are non-trivial. If v̂(y) ̸= 0, then
there exists fxy ∈ Fxy such that f ′

xy(x) = v̂(x)/v̂(y). If v̂(x) ̸= 0, then there exists
gxy ∈ Gxy such that g′xy(y) = v̂(y)/v̂(x).

Proof. Case 1: 0 ≤ x ≤ y < τ ≤ 1

Part I: Suppose v̂(y) = ϕ′
yτ (y) ̸= 0. By the right-inverse function theorem,29

there exists a right-inverse ϕ−1
yτ (·) of ϕyτ (·) defined on a neighborhood of τ such

that ϕ′−1
yτ (τ) = 1/ϕ′

yτ (y). Then there exists δ > 0 such that for all x̂ ∈ N(x, δ),
(x, τ) ∼ (x̂, ϕxτ (x̂)) and (y, τ) ∼ (ϕ−1

yτ (ϕxτ (x̂)), ϕxτ (x̂)). By Axiom 1.2, (x, y) ∼
(x̂, ϕ−1

yτ (ϕxτ (x̂)). Let fxy(x̂) ≡ ϕ−1
yτ (ϕxτ (x̂)). Then fxy ∈ Fxy and f ′

xy(x) = ϕ′
xτ (x)/ϕ

′
yτ (y) =

v̂(x)/v̂(y).

Part II: Suppose v̂(x) = ϕ′
xτ (x) ̸= 0. By the right-inverse function theorem, there

exists a right-inverse ϕ−1
xτ (·) defined on a neighborhood of τ such that ϕ′−1

xτ (τ) =

29See Radulescu and Radulescu (1989).

21



1/ϕ′
xτ (x). Then there exists δ > 0 such that for all ŷ ∈ N(y, δ), (y, τ) ∼ (ŷ, ϕyτ (ŷ))

and (x, τ) ∼ (ϕ−1
xτ (ϕyτ (ŷ)), ϕyτ (ŷ)). By Axiom 1.2, (x, y) ∼ (ϕ−1

xτ (ϕyτ (ŷ)), ŷ). Let
gxy(ŷ) ≡ ϕ−1

xτ (ϕyτ (ŷ)). Then gxy ∈ Gxy and g′xy(y) = ϕ′
yτ (y)/ϕ

′
xτ (x) = v̂(y)/v̂(x).

Case 2: 0 ≤ x < τ ≤ y ≤ 1

Part I: Suppose v̂(y) = γ′τy(y) ̸= 0. By the right-inverse function theorem, there
exists a right-inverse γ−1

τy (·) defined on a neighborhood of τ such that γ′−1
τy (τ) =

1/γ′τy(y). Then there exists δ > 0 such that for all x̂ ∈ N(x, δ), (x, τ) ∼ (x̂, ϕxτ (x̂))
and (τ, y) ∼ (ϕxτ (x̂), γ

−1
τy (ϕxτ (x̂))). By Axiom 1.2, (x, y) ∼ (x̂, γ−1

τy (ϕxτ (x̂))). Let
fxy(x̂) ≡ γ−1

τy (ϕxτ (x̂)). Then fxy ∈ Fxy and f ′
xy(x) = ϕ′

xτ (x)/γ
′
τy(y) = v̂(x)/v̂(y).

Part II: Suppose v̂(x) = ϕ′
xτ (x) ̸= 0. By the right-inverse function theorem, there

exists a right-inverse ϕ−1
xτ (·) defined on a neighborhood of τ such that ϕ′−1

xτ (τ) =
1/ϕ′

xτ (x). Then there exists δ > 0 such that for all ŷ ∈ N(y, δ), (x, τ) ∼ (ϕ−1
xτ (γτy(ŷ)), γτy(ŷ))

and (τ, y) ∼ (γτy(ŷ), ŷ). By Axiom 1.2, (x, y) ∼ (ϕ−1
xτ (γτy(ŷ)), ŷ). Let gxy(ŷ) ≡

ϕ−1
xτ (γτy(ŷ)). Then gxy ∈ Gxy and g′xy(y) = γ′τy(y)/ϕ

′
xτ (x) = v̂(y)/v̂(x).

Case 3: 0 ≤ τ ≤ x ≤ y ≤ 1

Part I: Suppose v̂(y) = γ′τy(y) ̸= 0. By the right-inverse function theorem, there
exists a right-inverse γ−1

τy (·) defined on a neighborhood of τ such that γ′−1
τy (τ) =

1/γ′τy(y). Then there exists δ > 0 such that for all x̂ ∈ N(x, δ), (τ, x) ∼ (γτx(x̂), x̂)
and (τ, y) ∼ (γτx(x̂), γ

−1
τy (γτx(x̂))). By Axiom 1.2, (x, y) ∼ (x̂, γ−1

τy (γτx(x̂))). Let
fxy(x̂) ≡ γ−1

τy (γτx(x̂)). Then fxy ∈ Fxy and f ′
xy(x) = γ′τx(x)/γ

′
τy(y) = v̂(x)/v̂(y).

Part II: Suppose v̂(x) = γ′τx(x) ̸= 0. By the right-inverse function theorem, there
exists a right-inverse γ−1

τx (·) defined on a neighborhood of τ such that γ′−1
τx (τ) =

1/γ′τx(x). Then there exists δ > 0 such that for all ŷ ∈ N(y, δ), (τ, y) ∼ (γτy(ŷ), ŷ)
and (τ, x) ∼ (γτy(ŷ), γ

−1
τx (γτy(ŷ))). By Axiom 1.2, (x, y) ∼ (γ−1

τx (γτy(ŷ)), ŷ). Let
gxy(ŷ) ≡ γ−1

τx (γτy(ŷ)). Then gxy ∈ Gxy and g′xy(y) = γ′τy(y)/γ
′
τx(x) = v̂(y)/v̂(x). ■

Lemma 4 says that if two points are on the same indifference curve generated by
Û(x, y) = V̂ (y)− V̂ (x), then they are indifferent according to ⪰.

Lemma 4. At any point (x, y), small changes in x and y that hold V̂ (y) − V̂ (x)
constant do not change the preference.

Proof. If preferences are trivial, this holds by definition. Suppose preferences are
non-trivial. Consider a point (x, y) at which v̂(y) ̸= 0. Small changes with dy/dx =
v̂(x)/v̂(y) hold V̂ (y)−V̂ (x) constant, and by Lemma 3, do not change the preference.
Consider a point (x, y) at which v̂(x) ̸= 0. Small changes with dy/dx = v̂(y)/v̂(x)
hold V̂ (y)− V̂ (x) constant, and by Lemma 3, do not change the preference. In other
words, the indifference map generated by Û(x, y) = V̂ (y)−V̂ (x) and the indifference
map generated by preferences ⪰ agree for all points at which v̂(x) ̸= 0 or v̂(y) ̸= 0.
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Now, consider a point (x, y) at which v̂(x) = v̂(y) = 0. For any z ∈ [0, 1] such that
v̂(z) = 0, let [z, z] be the largest interval around z for which v̂(t) = 0 for all t ∈ [z, z].

We would first like to show that for any z such that v̂(z) = 0, (z, z′) ∼ 0 for all
z′ ∈ [z, z]. If z < τ , then z ≤ z < τ by Axiom 1.4, (z, τ) ∼ (z′, τ) (since on the
same horizontal indifference curve), and (z, z′) ∼ (z′, z′) ∼ 0 by Lemma 2. If z > τ ,
then τ < z ≤ z by Axiom 1.4, (τ, z) ∼ (τ, z′) (since on the same vertical indifference
curve), and 0 ∼ (z, z) ∼ (z, z′) by Lemma 2.

We would now like to show that (x, y) ∼ (x′, y′) for any x′ ∈ [x, x] and y′ ∈ [y, y]
with x′ ≤ y′. From the previous result, (x, x′) ∼ 0 and (y, y′) ∼ 0. By Axiom 1.2,
(x, y) ∼ (x′, y′).

For any (x, y) with v̂(x) = v̂(y) = 0, there exists an indifference curve for which
Û(x, y) and ⪰ agree that gets arbitrarily close to (x, y) and an indifference curve for

which Û(x, y) and ⪰ agree that gets arbitrarily close to (x, y). By Axiom 1.3, (x, y)
and (x, y) are part of such indifference curves, respectively, and by the previous
result, all points in the rectangle connecting (x, y), (x, y), (x, y), and (x, y) are
indifferent. ■

The following definition says that a point (x, y) is increasing to the left (inc-left) if
all points directly to the left within some neighborhood are strictly preferred to it
(and likewise for the other cases).

Definition 4.1. (x, y) is inc(dec)-left if ∃δ > 0, ∀ε ∈ (0, δ), (x− ε, y)≻(≺) (x, y),
inc(dec)-right if ∃δ > 0, ∀ε ∈ (0, δ), (x + ε, y) ≻(≺) (x, y), inc(dec)-down if ∃δ >
0, ∀ε ∈ (0, δ), (x, y − ε)≻(≺) (x, y), and inc(dec)-up if ∃δ > 0, ∀ε ∈ (0, δ), (x, y +
ε)≻(≺) (x, y).

Let me refer to the line connecting (0, τ), (τ, τ), and (τ, 1) as the τ -ray. Lemma 5
says that there must exist some point (x∗, τ) on the horizontal portion of the τ -
ray that is either increasing upward or decreasing upward and either increasing
downward or decreasing downward. (This is also true on the vertical portion, but
we will not need this fact.)

Lemma 5. Suppose Axioms 1.1, 1.2, 1.3, and 1.4. Then there exists 0 < x∗ < τ
such that (x∗, τ) is inc-up or dec-up and inc-down or dec-down.

Proof. By Axiom 1.4, there exists 0 < x < τ such that v̂(x) ̸= 0. Suppose by
contradiction that (x, τ) is neither inc-up nor dec-up. Then by Axiom 1.3, for any
δ > 0, there exists ε ∈ (0, δ) such that (x, τ + ε) ∼ (x, τ). For sufficiently small ε,
there exists h ∈ R such that τ+ε = ϕxτ (x+h).30 By Lemma 2, (x+h, ϕxτ (x+ε)) =
(x+h, τ+ε) ∼ (x+h, τ). But this is a contradiction, since ϕxτ (x+ε) is an indifference

30Note that h may be negative.
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curve formed with points closest to the horizontal τ . The same technique is used to
show (x∗, τ) must be inc-down or dec-down. ■

Lemma 6 says that a point (x, y) on the τ -ray is increasing to the left if and only if
it is decreasing downward, if v̂(t) is positive, or upward, if v̂(t) is negative. Similarly
for the other cases.

Lemma 6. Suppose Axioms 1.1, 1.2, and 1.4 and let 0 ≤ x < τ < y ≤ 1. If
v̂(x) > 0, then (x, τ) is inc(dec)-right if and only if it is dec(inc)-up, and (x, τ) is
inc(dec)-left if and only if it is dec(inc)-down. If v̂(x) < 0, then (x, τ) is inc(dec)-
right if and only if it is dec(inc)-down, and (x, τ) is inc(dec)-left if and only if it is
dec(inc)-up. The same is true for (τ, y) given v̂(y) > 0 and v̂(y) < 0, respectively.

Proof. Suppose v̂(x) = ϕ′
xτ (x) > 0. Then ∃δ > 0, ∀ε ∈ (0, δ), (x, τ) ∼ (x +

ε, ϕxτ (x+ ε)) and ϕxτ (x+ ε) > τ . By Lemma 2, (x+ ε, τ)≻(≺) (x, τ) if and only if
(x, τ) ∼ (x+ε, ϕxτ (x+ε))≻(≺) (x, ϕxτ (x+ε)). Hence, (x, τ) is inc(dec)-right if and
only if it is dec(inc)-up. The other three cases may be shown in the same manner.
Now suppose v̂(y) = γ′τy(y) > 0. Then ∃δ > 0, ∀ε ∈ (0, δ), (τ, y) ∼ (γτy(y+ε), y+ε)
and γτy(x + ε) > τ . By Lemma 2, (τ, y + ε) ≻(≺) (τ, y) if and only if (τ, y) ∼
(γτy(y + ε), y + ε)≻(≺) (γτy(y + ε), y). Hence, (τ, y) is inc(dec)-up if and only if it
is dec(inc)-right. The other three cases may be shown in the same manner. ■

Lemma 7 says that if a single point on the horizontal portion of the τ -ray is increasing
upward, then all points on the horizontal portion are increasing upward and all
points on the vertical portion are decreasing to the right. Similarly for the other
cases.

Lemma 7. Suppose Axioms 1.1 and 1.2 and let 0 ≤ x < τ < y ≤ 1. Then (x, τ) is
inc(dec)-up if and only if (τ, y) is dec(inc)-right, and (x, τ) is inc(dec)-down if and
only if (τ, y) is dec(inc)-left.

Proof. By Lemma 2, ∃δ > 0, ∀ε ∈ (0, δ), (x, τ + ε)≻(≺) (x, τ) if and only if (τ, τ +
ε)≻(≺) (τ, τ) if and only if (τ, τ + ε)≻(≺) (τ + ε, τ + ε) if and only if, for y > τ + ε,
(τ, y)≻(≺) (τ + ε, y). Hence, (x, y) is inc(dec)-up if and only if it is dec(inc)-right.
The other case may be shown in the same manner. ■

We are now ready to construct the representation U . Define

v(t) =

{
v̂(t) if (x∗, τ) is inc-up
−v̂(t) if (x∗, τ) is dec-up

,

V (z) =

∫ z

0
v(t) dt,
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and

U(x, y) =

∫ y

x
v(t) dt = V (y)− V (x).

Lemma 8 says that small changes in x or y that increase V (y)− V (x) increase the
preference, and small changes in x or y that decrease V (y) − V (x) decrease the
preference.

Lemma 8. Suppose Axioms 1.1, 1.2, 1.3, and 1.4. At any point (x, y), small
changes in x that increase V decrease the preference and small changes in x that
decrease V increase the preference, while small changes in y that increase V increase
the preference and small changes in y that decrease V decrease the preference.

Proof. First, we would like to show that (x∗, τ) is inc(dec)-up if and only if it is
dec(inc)-down. By Lemma 5, (x∗, τ) is either inc-up or dec-up and either inc-down
or dec-down. Suppose v̂(x∗) > 0. By Lemma 6, if (x∗, τ) is inc(dec)-up it is also
dec(inc)-right, and if (x∗, τ) is inc(dec)-down it is also dec(inc)-left. Suppose by
contradiction that (x∗, τ) is inc(dec)-up and inc(dec)-down. Then by Lemma 7 all
points on the horizontal portion of the τ -ray are inc(dec)-up and inc(dec)-down, and
by Lemma 6 these points are also dec(inc)-right and dec(inc)-left. But all points in
an interval cannot be dec(inc)-right and dec(inc)-left,31 so we have a contradiction.
The same can be shown in the case of v̂(x∗) < 0.

By Lemma 6, for any x < y, v(x) > 0 implies (x, τ) is inc-left and dec-right, v(x) < 0
implies (x, τ) is dec-left and inc-right, v(y) > 0 implies (τ, y) is dec-down and inc-up,
and v(y) < 0 implies (τ, y) is inc-down and dec-up. By Lemma 2, this holds for any
(x, y). The result follows. ■

Definition 4.2. A function f is non-decreasing (non-increasing) to the right at
x if there exists δ > 0 such that f is non-decreasing (non-increasing) on [x, x +
δ], and is non-decreasing (non-increasing) to the left at x if there exists δ > 0
such that f is non-decreasing (non-increasing) on [x− δ, x]. Similarly for (strictly)
increasing/decreasing to the right/left.

Lemma 9 says that comparisons to 0 under the representation U imply the corre-
sponding comparison to 0 under ⪰.

Lemma 9. Suppose Axioms 1.1, 1.2, 1.3, and 1.4. Then U(I) > 0 =⇒ I ≻ 0,
U(I) = 0 =⇒ I ∼ 0, and U(I) < 0 =⇒ I ≺ 0.

Proof. Let I = (x, y) so that U(I) = V (y)− V (x).

Part I: U(I) = 0 =⇒ I ∼ 0

31A function cannot have a local max(min) at every point in an interval.
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(“Squeeze and Partition”) Suppose V (y) = V (x). As long as V is non-decreasing
(non-increasing) to the right at x and non-increasing (non-decreasing) to the left at
y, squeeze (x, y) inward32 until we reach a point (x′, y′) with V (y′) = V (x′) = k
where (1) x′ = y′, or (2) V is decreasing to the right at x′ and left at y′ or increasing
to the right at x′ and left at y′. If (1), then (x, y) ∼ (x′, y′) ∼ 0, and we are done. If
(2), then there exists t ∈ (x′, y′) such that V (t) = k. Repeat this process for (x, t)
and (t, y). In (2), V ′ = v must cross zero at least twice in (x′, y′). Since v crosses
zero finitely many times, this process must terminate. By Axiom 1.2, (x, y) ∼ 0.

Part II: U(I)>(<) 0 =⇒ I ≻(≺) 0

(“Slide and Jump”) Suppose V (y)>(<)V (x). As long as V is non-decreasing (non-
increasing) to the right at x, slide x right holding y constant, decreasing (increasing)
the preference (by Lemma 8), until we reach an x′ such that (1) V (x′) = V (y), or
(2) V is decreasing (increasing) to the right at x. If (1), then (x, y)≻(≺) (x′, y) ∼ 0
(by Part I), and we are done. If (2), then there exists x′′ ∈ (x′, y) such that V (x′′) =
V (x′). By Part I (x′, x′′) ∼ 0 and by Axiom 1.2 (x, y) ≻(≺) (x′, y) ∼ (x′′, y).
Repeat this process for (x′′, y). In (2), V ′ = v must cross zero at least once in
(x′, y). Since v crosses zero finitely many times, this process must terminate. Hence,
(x, y)≻(≺) 0. ■

Suppose V (x)≥(≤)V (y). Lemma 10 says that for any x̂ ≤ y with V (x̂)≥(≤)V (x), we
can find a ŷ such that (x̂, ŷ) ∼ (x, y). Similarly, for any ŷ ≥ x with V (ŷ)≥(≤)V (y),
we can find a x̂ such that (x̂, ŷ) ∼ (x, y).

Lemma 10. Suppose Axioms 1.1, 1.2, 1.3, and 1.4. Let x ≤ y. Suppose V (x)≥(≤)
V (y). For any x̂ ∈ [0, y] with V (x̂)≥(≤)V (x), there exists ŷ ∈ [x̂, y] such that V (ŷ)−
V (x̂) = V (y) − V (x) and (x̂, ŷ) ∼ (x, y). For any ŷ ∈ [x, 1] with V (ŷ) ≥(≤) V (y),
there exists x̂ ∈ [x, ŷ] such that V (ŷ)− V (x̂) = V (y)− V (x) and (x̂, ŷ) ∼ (x, y).

Proof. Let x ≤ y and V (x)≥(≤) V (y).

Suppose x̂ ∈ [0, x] and V (x̂)≥(≤) V (x). If V is non-increasing (non-decreasing) to
the left at x and y, slide (x, y) to the left33 until (1) V (x′) = V (x̂), or (2) V is
increasing (decreasing) to the left at x′ or at y′. If (1), then (x̂, x′) ∼ 0 by Lemma 9
and (x̂, y′) ∼ (x′, y′) ∼ (x, y) by Axiom 1.2, so we are done. If (2), then proceed as
follows. If V is increasing (decreasing) to the left at x′, then there exists x′′ ∈ (x̂, x′)
such that V (x′′) = V (x′) and by Lemma 9, (x′′, x′) ∼ 0. If not, let x′′ = x′. If V
is increasing (decreasing) to the left at y′, then there exists y′′ ∈ (x′, y′) such that
V (y′′) = V (y′) and by Lemma 9, (y′′, y′) ∼ 0. If not, let y′′ = y′. By Axiom 1.2,

32By this I mean increase x and decrease y holding U(x, y) = V (y) − V (x) constant, which by
Lemma 4, keeps the individual indifferent.

33By this I mean increase x and increase y holding U(x, y) = V (y) − V (x) constant, which by
Lemma 4, keeps the individual indifferent.
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(x′′, y′′) ∼ (x′, y′) ∼ (x, y). Repeat this process for (x′′, y′′). In (2), V ′ = v must
cross zero at least once within (x̂, x′) or (x′, y′). Since v crosses zero finitely many
times, this process must terminate, and the result follows.

Suppose x̂ ∈ (x, y] and V (x̂)≥(≤) V (x). If V is non-decreasing (non-increasing) to
the right at x and non-increasing (non-decreasing) to the left at y, squeeze (x, y)
inward34 until (1) V (x′) = V (x̂), or (2) V is decreasing (increasing) to the right at
x′ or increasing (decreasing) to the left at y′. If (1), then (x′, x̂) ∼ 0 by Lemma 9
and (x̂, y′) ∼ (x′, y′) ∼ (x, y) by Axiom 1.2, so we are done. If (2), then proceed as
follows. If V is decreasing (increasing) to the right at x′, then there exists x′′ ∈ (x′, x̂)
such that V (x′′) = V (x′) and by Lemma 9, (x′, x′′) ∼ 0. If not, let x′′ = x′. If V
is increasing (decreasing) to the left at y′, then there exists y′′ ∈ (x̂, y′) such that
V (y′′) = V (y′) and by Lemma 9, (y′′, y′) ∼ 0. If not, let y′′ = y′. By Axiom 1.2,
(x′′, y′′) ∼ (x′, y′) ∼ (x, y). Repeat this process for (x′′, y′′). In (2), v must cross
zero at least once within (x′, x̂) or (x̂, y′). Since v crosses zero finitely many times,
this process must terminate, and the result follows.

A similar proof applies for the latter half of the lemma. ■

Finally, Lemma 11 says that U represents ⪰.

Lemma 11. Suppose Axioms 1.1, 1.2, 1.3, and 1.4. Then I ⪰ J ⇐⇒ U(I) ≥
U(J).

Proof. We seek to show that for any I and J , U(I)>(=)(<)U(J) =⇒ I≻(∼)(≺)J .
Let I = (x, y) and J = (a, b). If U(I) and U(J) have opposite signs or at least one
is zero, then the result follows immediately by Lemma 9. Suppose I and J are non-
zero with the same sign, so that U(I), U(J) > 0 or U(I), U(J) < 0. We will prove
the result for U(I), U(J) > 0. The proof for U(I), U(J) < 0 follows in a similar
fashion.

Case 1 (Disjoint Intervals): x ≤ y ≤ a ≤ b

1. V (b) ≥ V (y)

• By Lemma 10, there exists a′ ∈ [x, b] such that V (b) − V (a′) = V (y) −
V (x) and (a′, b) ∼ (x, y). By Lemma 1 and 9: if a ≤ a′, U(I) >(=)(<)
U(J) implies V (a′) − V (a) <(=)(>) 0 implies (a, a′) ≺(∼)(≻) 0 implies
(a′, b) ≻(∼)(≺) (a, b); and if a′ < a, U(I) >(=)(<) U(J) implies V (a) −
V (a′)>(=)(<) 0 implies (a′, a)≻(∼)(≺) 0 implies (a′, b)≻(∼)(≺) (a, b).

2. V (y) > V (b)

34See Footnote 32 for definition.
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• By Lemma 1, (x, y) ⪰ (a, b) ⇐⇒ (x, a) ⪰ (y, b). By Lemma 10, there
exists a′ ∈ [y, a] such that V (a)−V (x) = V (a′)−V (y) and (x, a) ∼ (y, a′).
Similarly, there exists y′ ∈ [y, b] such that V (b) − V (y) = V (a) − V (y′)
and (y, b) ∼ (y′, a). By Lemma 1, (y, a′) ⪰ (y′, a) ⇐⇒ (y, y′) ⪰ (a′, a).
Notice that y ≤ y′ ≤ a′ ≤ a, V (y′) − V (y) = V (a) − V (b) < 0, and
V (a) − V (a′) = V (x) − V (y) < 0. Hence, we are in Case 1-1 with
U(I), U(J) < 0, which follows in the same manner as Case 1-1 with
U(I), U(J) > 0.

Case 2 (Overlapping Intervals): x ≤ a ≤ y ≤ b

By Lemma 1, (x, y) ⪰ (a, b) ⇐⇒ (x, a) ⪰ (y, b), bringing us to Case 1.

Case 3 (Containing Intervals): a ≤ x ≤ y ≤ b

1. V (a) < V (b) ≤ V (x) < V (y)

• By Lemma 10, there exists b′ ∈ [a, y] such that V (b′)−V (a) = V (y)−V (x)
and (a, b′) ∼ (x, y). By Lemma 1 and 9, U(I)>(=)(<)U(J) implies V (b)−
V (b′)<(=)(>) 0 implies (b′, b)≺(∼)(≻) 0 implies (a, b′)≻(∼)(≺) (a, b).

2. V (x) < V (y) ≤ V (a) < V (b)

• By Lemma 10, there exists a′ ∈ [x, b] such that V (b)−V (a′) = V (y)−V (x)
and (a′, b) ∼ (x, y). By Lemma 1 and 9, U(I) >(=)(<) U(J) implies
V (a′)− V (a)<(=)(>) 0 implies (a, a′)≺(∼)(≻) 0 implies (a′, b)≻(∼)(≺)
(a, b).

3. V (a) ≤ V (x) < V (y) ≤ V (b)

• Note that only U(I) < U(J) and U(I) = U(J) are possible here. By
Lemma 9, V (x)−V (a)>(=)0 implies (a, x)≻(∼)0 and V (b)−V (y)>(=)0
implies (y, b) ≻(∼) 0. U(I) <(=) U(J) implies at least one > (both =),
and hence (x, y)≺(∼) (a, b) by Axiom 1.2.35

4. V (x) ≤ V (a) < V (b) ≤ V (y)

• Note that only U(I) > U(J) and U(I) = U(J) are possible here. By
Lemma 9, V (x)−V (a)<(=)0 implies (a, x)≺(∼)0 and V (b)−V (y)<(=)0
implies (y, b) ≺(∼) 0. U(I) >(=) U(J) implies at least one < (both =),
and hence (x, y)≻(∼) (a, b) by Axiom 1.2.

■

We are now ready to prove Theorem 1.

35Note that we could apply either of the previous two arguments here as well.
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Theorem 1. Axioms 1.1, 1.2, 1.3, and 1.4 hold if and only if there exists an
instantaneous utility function v : [0, 1] → R that is continuous and crosses zero
finitely many times, such that ⪰ is represented by the experienced utility function
U : I → R given by

U(I) =

∫
I
v(t) dt.

Moreover, Ũ(I) =
∫
I ṽ(t) dt is another representation if and only if ṽ = αv for some

α > 0.

Proof. By Lemma 11, Axioms 1.1, 1.2, 1.3, and 1.4 imply U represents ⪰. That
U represents ⪰ implies Axioms 1.1, 1.2, 1.3, and 1.4 is straightforward and left to
the reader. Lastly, we seek to show that if U(I) =

∫
I v(t) dt is an experienced

utility representation of ⪰, then Ũ(I) =
∫
I ṽ(t) dt is also an experienced utility

representation of ⪰ if and only if ṽ = αv for some α > 0. If preferences are
trivial, this is immediate. Suppose preferences are non-trivial. The proof of ⇐ is
straightforward and left to the reader. To show ⇒, recall that for any x < τ the
slope of the indifference curve at (x, τ) is v(x)/v(τ) and for any y > τ the inverse
slope of the indifference curve at (τ, y) is v(y)/v(τ). To match these slopes, v̂(τ) ̸= 0
and v̂(t)/v̂(τ) = v(t)/v(τ) for all t ∈ [0, 1]. Hence, v̂(t) = v(t) · v̂(τ)/v(τ) for all
t ∈ [0, 1]. But Ũ(I) =

∫
I ṽ(t) dt only represents preferences ⪰ if α = v̂(τ)/v(τ) > 0

(if α < 0 the preferences would be reversed), completing the proof. ■

C.2 Proof of Theorem 2

By Axiom 2.5, all empty experiences are indifferent, so when there is no confusion
we may denote any such experience by 0.

Definition 4.1. A set of experiences {(x, Ik)}k=1,...,n is an equi-partition of (x, I)
if (x, I1) ∼ . . . ∼ (x, In), and {I1, . . . , In} is a partition of I.

Lemma 12 says that we may cut any pair of experiences into n equal pieces by
preference, and the ranking between any two pieces, one from each experience, will
be the same as between the original pair of experiences.

Lemma 12. Suppose Axioms 2.1 and 2.2. Let {(x, Ik)}k∈K and {(y, Jk)}k∈K be
equi-partitions of (x, I) and (y, J), respectively, where K = {1, . . . , n} and n ≥
2. Then (x, I) =

∑
k∈K(x, Ik) ⪰

∑
k∈K(y, Jk) = (y, J) if and only if ∀k, l ∈ K,

(x, Ik) ⪰ (y, Jl).

Proof. To show ⇒, suppose by contradiction (x, I) ⪰ (y, J) and (x, Ia) ≺ (y, Jb) for
some a, b ∈ K. Then (x, Ik) ≺ (y, Jl) for all k, l ∈ K, and by Axiom 2.2 (x, I) =∑

k∈K(x, Ik) ≺
∑

k∈K(y, Jk) = (y, J), a contradiction. ⇐ follows immediately by
Axiom 2.2. ■
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Recall that X+ = {x ∈ X : ∃I ∈ I, (x, I) ≻ (x, ∅)}, X− = {x ∈ X : ∃I ∈ I, (x, I) ≺
(x, ∅)}, and ⪰ is diametric if and only if X+ and X− are non-empty and disjoint.
We are now ready to prove Theorem 2.

Theorem 2. Axioms 2.1, 2.2, 2.3, 2.4, and 2.5 hold if and only if there exists a
set V = {vx}x∈X of instantaneous utility functions vx : [0, 1] → R, each of which is
continuous and crosses zero finitely many times, such that ⪰ is represented by the
experienced utility function U : X × I → R given by

U(x, I) =

∫
I
vx(t) dt.

If preferences are diametric, V + = {vx}x∈X+ and V − = {vx}x∈X− are independently
ratio-scale.36 Otherwise, V is ratio-scale.

Proof. Let ⪰x be the relation ⪰ restricted to {x}×I. Axioms 2.1, 2.2, 2.3, and 2.4
imply Axioms 1.1, 1.2, 1.3, and 1.4 on ⪰x for each x ∈ X. By Theorem 1, for
each x there exists an experienced utility representation Ux(I) =

∫
I vx(t) dt of

⪰x, unique up to a positive scalar αx > 0. Since preferences are continuous on
a compact set, there exists a preference maximal and minimal interval for each
x ∈ X. Let Mx ∈ {I ∈ I : ∀J ∈ I, (x, I) ⪰ (x, J)} denote a maximal interval
for x and mx ∈ {I ∈ I : ∀J ∈ I, (x, I) ⪯ (x, J)} denote a minimal interval for x.
By Axiom 2.5, ⪰ agree on empty experiences. Hence, let 0 denote any such empty
experience. Let (X×I)+ = {(x, I) : (x, I) ≻ 0} denote the set of positive experiences
and (X × I)− = {(x, I) : (x, I) ≺ 0} denote the set of negative experiences.

If X+ is non-empty, for each x ∈ X+, let U+
x be an experienced utility representa-

tions of ⪰x and normalize U+
x (Mx) = 1. If X+ is a singleton, U(x, I) = U+

x (I) repre-
sents preferences over (X×I)+. Otherwise, consider any two experiences y, z ∈ X+

such that (y,My) ⪰ (z,Mz) ≻ 0. Then there exists an interval L ⊆ My such that
(y, L) ∼ (z,Mz). Let α+

yz = Uy(L) (hence α+
yzU

+
y (My) = Uy(L) = U+

z (Mz)) and
α+
zy = 1/α+

yz. This is the ratio of U+
y to U+

z that “calibrates” the utilities. In
particular, we would like to show that

Û+(x, I) =

{
α+
yzU

+
y (I) if x = y

U+
y (I) if x = z

represents preferences over ({y, z} × I)+. For any (y, J) ≻ (y, L) ∼ (z,Mz),
Û+(y, J) > Û+(z,K) for all (z,K). For any 0 ≺ (y, J) ⪯ (y, L), let (y, Jn) =
(y, Ln

1 ⊕ . . . ⊕ Ln
m(n)) ⪯ (y, J) be the concatenation of the first m(n) elements of

some equi-partition of (y, L) with cardinality n and let Ĵ = limn→∞ Jn. Then
(y, Ĵ) ∼ (y, J). Let (z,Kn) = (z,Mn

z,1 ⊕ . . . ⊕ Mn
z,m(n)) be the concatenation of

36Ũ(x, I) =
∫
I
ṽx(t) dt is another representation if and only if for some α1, α2 > 0, ṽx = α1vx for

all x ∈ X+ and ṽx = α2vx for all x ∈ X−.
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the first m(n) elements of some equi-partition of (z,Mz) with cardinality n and
let K̂ = limn→∞Kn. By Lemma 12, (z, K̂) ∼ (y, Ĵ) ∼ (y, J) and U+

z (K̂) =
α+
yzU

+
y (Ĵ) = α+

yzU
+
y (J). We may do the same in the other direction for any

(z,K) ≻ 0. Hence, Û+(x, I) represents positive experiences for alternatives y, z.
Now, for some o ∈ X+ let

U+(x, I) = α+
xoU

+
x (I)

where α+
oo = 1. We would like to show that U+(x, I) represents preferences over

(X × I)+. For any y, z ∈ X+ there exists I, J,K ∈ I such that (o, I) ∼ (y, J) ∼
(z,K). Hence, U+

o (I) = α+
yoU

+
y (J), U+

o (I) = α+
zoU

+
z (K), U+

y (J) = α+
zyU

+
z (K), and

α+
yzU

+
y (J) = U+

z (K), so α+
yo/α

+
zo = α+

yz = 1/α+
zy as desired.

If X− is non-empty, for each x ∈ X−, let U−
x be an experienced utility represen-

tations of ⪰x and normalize U−
x (mx) = −1. Proceed as before. Then U−(x, I) =

α−
xoU

−
x (I) represents preferences over (X × I)−.

For any (x, I) ∈ (X×I)+ and (y, J) ∈ (X×I)−, (x, I) ≻ 0 ≻ (y, J) and U+
x (I) > 0 >

U−
y (J). Moreover, zero segments are indifferent across experiences by Axiom 2.5.

Hence, if X+ and X− are non-empty and disjoint (preferences are diametric), then
for any α, β > 0,

U(x, I) =


αU+(x, I) if (x, I) ∈ (X × I)+
βU−(x, I) if (x, I) ∈ (X × I)−
0 otherwise

is an experienced utility representation of ⪰ over X × I and is unique up to two
positive scalars. If, on the other hand, X+ or X− is empty, then U is defined
only for weakly positive or negative segments and so is unique up to a positive
scalar. Suppose X+ and X− are non-empty and non-disjoint. Then U(x, I) is an
experienced utility representation only if αU+(x, I) = βU−(x, I) for all x ∈ X+∩X−

and I ∈ I. Let γ = U+(x, I)/U−(x, I) for all x ∈ X+ ∩X− and I ∈ I. Then for
any α > 0,

U(x, I) =


αU+(x, I) if (x, I) ∈ (X × I)+
αγU−(x, I) if (x, I) ∈ (X × I)−
0 otherwise

is an experienced utility representation of ⪰ and is unique up to a positive scalar.

■

C.3 Proof of Theorem 3

By Axiom 3.5, all empty experience singletons are indifferent, so when there is no
confusion we may denote any such multiset by 0. Once again, I will sometimes write
(x, I) to mean the singleton {(x, I)}.
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Lemma 13 says that we may cut any pair of experiences into n equal pieces by
preference, and the ranking between the collection of any two pieces, one from each
experience, and the empty experience will be the same as between the collection of
the original pair of experiences and the empty experience.

Lemma 13. Suppose Axioms 3.1, 3.2, and 3.6. Let {(x, Ik)}k∈K and {(y, Jk)}k∈K
be equi-partitions of (x, I) and (y, J), respectively, where K = {1, . . . , n} and n ≥ 2.
Then {(x, I), (y, J)} ⪰ 0 if and only if ∀k, l ∈ K, {(x, Ik), (y, Jl)} ⪰ 0.

Proof. To show⇒, suppose by contradiction {(x, I), (y, J)} ⪰ 0 and {(x, Ia), (y, Jb)} ≺
0 for some a, b ∈ K. By Axiom 3.2, {(x, Ik), (y, Jl)} ≺ 0 for all k, l ∈ K and
{(x, I), (y, J)} ≺ 0, a contradiction. ⇐ follows immediately by Axiom 3.2. ■

Lemma 14 says that there exists an experienced utility representation U of pref-
erences over singletons which also represents comparisons of any doubleton to an
empty experience.

Lemma 14. Suppose Axioms 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6. Then there exists an
experienced utility representation U(x, I) unique up to a positive scalar that repre-
sents preferences over singletons and such that for any y, z ∈ X, {(y, J), (z,K)} ⪰
0 ⇐⇒ U(y, J) + U(z,K) ≥ 0.

Proof. Axioms 3.1, 3.2, 3.3, 3.4, and 3.5 imply Axioms 2.1, 2.2, 2.3, 2.4, and 2.5
on ⪰ over singletons. For any (x, I), let (x, Ink ) be the kth element of an equi-
partition of (x, I) with cardinality n. We would like to show that for any y, z ∈ X,
{(y, J), (z,K)} ⪰ 0 ⇐⇒ U(y, J) + U(z,K) ≥ 0.

Suppose X+ and X− are non-empty and disjoint (preference are diametric). By
Theorem 2, there exists an experienced utility representation

Û(x, I) =


αU+(x, I) if (x, I) ∈ (X × I)+
βU−(x, I) if (x, I) ∈ (X × I)−
0 otherwise

representing preferences over singletons, unique up to two positive scalars α, β > 0.
Let o+ ∈ X+ and o− ∈ X−. By Axioms 3.2 and 3.5, {0, 0} ∼ {0}. By Axiom 3.3,
there exist L∗,M∗ such that {(o+, L∗), (o−,M∗)} ∼ 0 and for all L,M ∈ I such
that {(o+, L), (o−,M)} ∼ 0, (o+, L∗) ⪰ (o+, L) and (o−,M∗) ⪯ (o−,M). Let γ
solve U+(o+, L∗) + γU−(o−,M∗) = 0 and for any α > 0,

U(x, I) =


αU+(x, I) if (x, I) ∈ (X × I)+
αγU−(x, I) if (x, I) ∈ (X × I)−
0 otherwise

.
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For any (o+, L) ≻ (o+, L∗) and any (o−,M), U(o+, L)+U(o−,M) > 0 and {(o+, L), (o−,M)} ≻
0 by Axiom 3.2. For any (o−,M) ≺ (o−,M∗) and any (o+, L), U(o+, L)+U(o−,M) <
0 and {(o+, L), (o−,M)} ≺ 0 by Axiom 3.2.

For any (o+, L) ⪯ (o+, L∗), let (o+, Ln) = (o+, L∗n
1 ⊕ . . . ⊕ L∗n

m(n)) ⪯ (o+, L) be

the concatenation of the first m(n) elements of some equi-partition of (o+, L∗) with
cardinality n and let L̂ = limn→∞ Ln. Then (o+, L̂) ∼ (o+, L). For any (o−,M) ⪰
(o−,M∗), let (o−,Mn) = (o−,M∗n

1 ⊕ . . .⊕M∗n
m(n)) ⪯ (o−,M) be the concatenation of

the first m(n) elements of some equi-partition of (o−,M∗) with cardinality n and let
M̂ = limn→∞Mn. Then (o−, M̂) ∼ (o−,M). By Axiom 3.2, {(o+, L), (o−,M)} ⪰
0 ⇐⇒ {(o+, L̂), (o−, M̂)} ⪰ 0 and by Lemma 13, {(o+, L̂), (o−, M̂)} ⪰ 0 ⇐⇒
U(o+, L) + U(o−,M) ≥ 0.

Consider any pair of experiences (y, J), (z,K) ∈ X×I. If (y, J), (z,K)≻(≺)0, then
trivially U(y, J) + U(z,K) ≥ 0 ⇐⇒ {(y, J), (z,K)} ⪰ 0. If (y, J) ≻ 0 ≻ (z,K),
then there exist L,M ∈ I and n ∈ Z+ such that (o+, L) ≻ 0 ≻ (o−,M) and
(y, Jn

k ) ∼ (o+, L) ≻ 0 ≻ (o−,M) ∼ (z,Kn
k ) for all k = 1, . . . , n. By Lemma 13,

{(y, J), (z,K)} ⪰ 0 ⇐⇒ {(y, Jn
k ), (z,K

n
k )} ⪰ 0, by Axiom 3.2, {(y, Jn

k ), (z,K
n
k )} ⪰

0 ⇐⇒ {(o+, L), (o−,M)} ⪰ 0, and from above, {(o+, L), (o−,M)} ⪰ 0 ⇐⇒
1
n(U(y, J) + U(z,K)) = U(o+, L) + U(o−,M) ≥ 0.

SupposeX+ andX− are non-empty and non-disjoint. By Theorem 2, there exists an
experienced utility representation U(x, I) representing preferences over singletons,
unique up to a positive scalar. Let o ∈ X+ ∩X−. Consider any pair of experiences
(y, J), (z,K) ∈ X × I. If (y, J), (z,K) ≻(≺) 0, then trivially U(y, J) + U(z,K) ≥
0 ⇐⇒ {(y, J), (z,K)} ⪰ 0. If (y, J) ≻ 0 ≻ (z,K), then there exist adjacent
intervals L,M ∈ I and n ∈ Z+ such that (o, L) ≻ 0 ≻ (o,M) and (y, Jn

k ) ∼ (o, L) ≻
0 ≻ (o,M) ∼ (z,Kn

k ) for all k = 1, . . . , n. By Lemma 13, 1
n(U(y, J) + U(z,K)) ≥

0 ⇐⇒ (o, L⊕M) ⪰ 0 ⇐⇒ {(y, Jn
k ), (z,K

n
k )} ⪰ 0 ⇐⇒ {(y, J), (z,K)} ⪰ 0.

If one or both of X+ and X− are empty, the result follows trivially by Axioms 3.2
and 3.5. ■

We are now ready to prove Theorem 3.

Theorem 3. Axioms 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 hold if and only if there exists
a set V = {vx}x∈X of instantaneous utility functions vx : [0, 1] → R, each of which
is continuous and crosses zero finitely many times, such that ⪰ is represented by the
experienced utility function U : M(X × I) → R given by

U(A) =
∑

(x,I)∈A

∫
I
vx(t) dt =

∑
(x,I)∈A

U(x, I).

Moreover, V is ratio-scale.
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Proof. Consider any two multisets A,B ∈ M(X × I). We would like to show that
the ranking between A and B is pinned down by preferences over singletons and
comparisons of doubletons to an empty experience. By Lemma 14, these preferences
are represented by an experienced utility function U unique up to a positive scalar.

Given any two experiences (x, I) ⪰(⪯) (y, J) ≻(≺) 0, there exists a partition I1, I2
of I such that (x, I2) ∼ (y, J). If (x, I) ∈ A and (y, J) ∈ B, then A = A−{(x, I)}+
{(x, I1)} + {(x, I2)} ⪰ B − {(y, J)} + {(y, J)} = B ⇐⇒ A′ ≡ A − {(x, I)} +
{(x, I1)} ⪰ B − {(y, J)} ≡ B′ by Axiom 3.2. Similarly if (x, I) ∈ B and (y, J) ∈ A.
Hence, we have removed two elements from A+B and added one. We may repeat
this as long as there are positive experiences in both A and B or negative experiences
in both A and B.

Given any two experiences (x, I) ≻ 0 ≻ (y, J), if {(x, I), (y, J)} ⪰ 0, there exists
a partition I1, I2 of I such that {(x, I2), (y, J)} ∼ 0. If (x, I), (y, J) ∈ A, then
A = A − {(x, I), (y, J)} + {(x, I1)} + {(x, I2), (y, J)} ⪰ B + {0} ⇐⇒ A′ ≡ A −
{(x, I), (y, J)}+ {(x, I1)} ⪰ B ≡ B′ by Axiom 3.2. Similarly if (x, I), (y, J) ∈ B. If
{(x, I), (y, J)} ≺ 0, there exists a partition J1, J2 of J such that {(x, I), (y, J2)} ∼ 0.
If (x, I), (y, J) ∈ A, then A = A − {(x, I), (y, J)} + {(x, J1)} + {(x, I), (y, J2} ⪰
B + {0} ⇐⇒ A′ ≡ A − {(x, I), (y, J)} + {(x, J1)} ⪰ B ≡ B′ by Axiom 3.2.
Similarly if (x, I), (y, J) ∈ B. Hence, we have removed two elements from A + B
and added one. We may repeat this as long as there are positive and negative
experiences in A or in B.

Since A and B are finite, we may repeat these steps until A contains only positive
(negative) experiences (or is empty) and B contains only negative (positive) expe-
riences (or is empty). Preferences are then pinned down by Axiom 3.2. Since U
agrees with ⪰ at each step, A ⪰ B ⇐⇒

∑
(x,I)∈A U(x, I) ≥

∑
(x,I)∈B U(x, I).

■
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