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Abstract

I write down the government’s public good provision problem from first prin-
ciples and, contrary to popular wisdom, find a solution. I call it the cost-
sharing pivotal mechanism. Both the statement of the problem and the solu-
tion are new. The cost-sharing pivotal mechanism is strategy-proof, employs
a utilitarian decision rule—generalizing the efficient decision rule by scaling
each individual’s monetary value by an arbitrary welfare weight—satisfies a
new participation constraint, satisfies a new fairness principle, and is ex-post
budget-balanced asymptotically in large populations. Moreover, I show that
the common methodological simplification of taking values to be net of one’s
cost share is not without loss of generality, standard participation constraints
are not well-suited for the government’s public good provision problem, and the
most well-known mechanism for public good provision, the Clarke mechanism,
violates a basic fairness constraint: if nothing is produced, no one should pay.

1 Introduction

A government would like to decide whether or not to produce a public good whose
value to each individual is privately known and whose cost of production is publicly
known. Through some previously enacted democratic process, the government has
decided what constitutes a fair share of the production cost for each individual as a
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function of their observable characteristics, such as income and location.1 A utilitarian
government produces the public good if and only if the social welfare benefits outweigh
the social welfare costs. The government asks each individual to report their willingess
to pay for the public good and, for each individual, scales this report by an individual-
specific welfare weight, which converts monetary units of value into interpersonally
comparable welfare units. Note that that the social welfare costs depend on the
allocation of costs between, e.g., the rich and the poor, since while the total monetary
cost remains the same, the total welfare cost depends on who pays.

The government would like to design a decision procedure that (a) provides incentives
for each individual to truthfully report their willingness to pay for the public good,
(b) provides incentives for each individual to participate in the process, (c) produces
the welfare-maximizing quantity of the public good, (d) raises exactly the amount of
revenue necessary to produce this quantity, and (e) does not ask anyone to pay what
has been deemed an unfair amount. Call this the government’s public good provision
problem.

It is well known that no decision procedure can satisfy all five criteria at once—
Green and Laffont (1979) show that no mechanism can satisfy (a), (c), and (d) alone.
However, I show that all five can be satisfied when the population is large, and,
moreover, that there is—up to vanishingly small perturbations—a unique solution. I
call this the cost-sharing pivotal mechanism.

In particular, the cost-sharing pivotal mechanism satisfies (a), (b), (c), and (e) exactly
and (d) arbitrarily closely as the population goes to infinity. Formally, these proper-
ties correspond to (a) strategy-proofness, (b) cost-sharing universal participation, (c)
utilitarianism, (d) asymptotic ex-post budget-balance, and (e) the fair pricing prin-
ciple. Strategy-proofness is standard in the literature and says that reporting one’s
private information truthfully should be a weakly dominant strategy for each individ-
ual. Asymptotic properties relating to budget-balance are also standard, though the
precise specification of asymptotic ex-post budget-balance here is new. Cost-sharing
universal participation and the fair pricing principle are each new concepts. Cost-
sharing universal participation states that each individual should always prefer to
participate in the mechanism rather than to not participate, receive the alternative
that would have been chosen without her, and be taxed her fair share of its cost.
The fair pricing principle states that each individual should never pay more than
her monetary value for what is produced or her fair share of its cost, whichever is
larger.

An efficient decision rule maximizes the sum of individuals’ willingness to pay for the
good minus its cost to produce. It is standard within mechanism design to require
efficiency as an axiom or to select an optimal mechanism with respect to this objec-

1For instance, those who earn more and live closer to the public good might be assigned a higher
fair cost share.
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tive. What I will refer to as a utilitarian decision rule maximizes a weighted sum
of individuals’ willingness to pay for the good minus a weighted sum of individuals’
cost shares. The weights, called welfare weights, convert monetary units of value
into interpersonally comparable welfare units. This idea has a long history in welfare
economics with the study of unweighted and weighted benefit-cost analysis (BCA).
An efficient decision rule is equivalent to an unweighted benefit-cost analysis, and a
utilitarian decision rule is equivalent to a weighted benefit-cost analysis. Within wel-
fare economics, the prominent view is that a weighted benefit-cost analysis is strongly
preferred to an unweighted benefit-cost analysis.2 Indeed, Fleurbaey and Abi-Rafeh
(2016) write that “it is hard to defend unweighted BCA because it is connected to no
good welfare economics.” In recent years, several papers in mechanism design have
begun to use a utilitarian objective.3 This paper imposes it as an axiom.

As a motivating example,4 suppose a city of 1,000 people would like to decide whether
or not to construct a public good—say, a library—which costs $550,000. The govern-
ment has previously decided that each individual’s fair share of the cost of the public
good should be their proportionate share of the total cost by income.

# income
welfare
weight

WTP fair cost share welfare benefit welfare cost

400 $30,000 2 $600 $300 1,200 600
500 $60,000 1 $400 $600 400 600
80 $100,000 .6 $200 $1,000 120 600
20 $250,000 .24 $200 $2,500 48 600

1,000 $460,000 $550,000 690,560 600,000

Figure 1: The leftmost column indicates how many individuals there are at each
income level, and the bottom row indicates the total of each column, weighted by the
number of individuals at each income level.

Notice that most of the monetary value comes from those with lower incomes, as those
with higher incomes often purchase books and other media rather than borrow them.
Moreover, this discrepancy is even more pronounced when we look at welfare values,

2See Blackorby and Donaldson (1990), Adler (2012), Adler (2016), Boadway (2016), Fleurbaey
and Abi-Rafeh (2016), Fleurbaey et al. (2013), and Bressler and Heal (2022).

3See Dworczak, Kominers and Akbarpour (2021), Pai and Strack (2022), Akbarpour, Dworczak
and Kominers (2023), Reuter and Groh (2023), and Akbarpour et al. (2024). It is worth mentioning
that the purpose of these papers is to study a situation where the use of welfare weights gives
importantly different results than without, where the results are already known or uninteresting. In
contrast, the results of this paper are still novel and relevant when considering the special case of
an efficient decision rule (indeed, the paper was originally written this way).

4This example is originally from Carroll (2023) and inspired my decision to use a utilitarian
rather than efficient decision rule.
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since a given willingness to pay corresponds to a higher welfare value the lower one’s
income. Indeed, by only looking at monetary values, we would conclude that the
library should not be built—as the monetary costs ($550,000) outweigh the monetary
benefits ($460,000). Standard in mechanism design, this is what the efficient decision
rule prescribes. However, if we take into account that an additional dollar contributes
more welfare to those with lower incomes than it does to those with higher incomes,
then we see that the welfare benefits of constructing the library (690,560) exceed the
welfare costs (600,000). So to maximize social welfare the library should be built, as
the utilitarian decision rule prescribes.

Ideally, we would like each individual to report their willingness to pay truthfully,
implement the utilitarian decision, and ask everyone to pay their fair cost share.
However, this procedure has infinitely perverse incentives. If an individual’s value
for the good is greater than her fair share of its cost, it is weakly dominant for her
to report an infinitely large value. If an individual’s value for the good is less than
her fair share of its cost, it is weakly dominant for her to report a zero value. Yet, a
simple refinement to this procedure can correct these infinitely perverse incentives in
a way that, in large populations, does not disturb the equilibrium outcome. That is,
in large populations, everyone in fact pays their fair cost share.

A classic result in mechanism design is that a mechanism is strategy-proof and efficient
if and only if it is a Groves mechanism: that is, if and only if each individual pays the
monetary loss she imposes on society, excluding her own monetary benefits from the
public good, plus a term that is constant in her report (and hence, does not affect
her incentives).5 A simple generalization of this result implies that a mechanism is
strategy-proof and utilitarian if and only if it is what I will call a generalized Groves
mechanism: that is, if and only if each individual pays her monetary equivalent of
the welfare loss she imposes on society, excluding her own welfare benefits from the
public good, plus a term that is constant in her report.

This means that the only flexibility which remains in searching for a solution to the
government’s public good provision problem is the choice of this constant term. The
answer is simple: in addition to the externality she imposes on society, an individ-
ual should pay her fair share of the cost of what would have been produced without
her.

The cost-sharing pivotal mechanism employs a utilitarian decision
rule and charges each individual her monetary equivalent of the welfare
loss she imposes on society, excluding her own welfare benefits from the
public good, plus her fair share of the cost of what would have been
produced without her.

5This mechanism was first introduced by Groves (1973). This result was first shown by Green
and Laffont (1977) and later generalized by Holmström (1979).
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In the library example, the cost-sharing pivotal mechanism opts to construct the
library and taxes each individual exactly her fair cost share. This is because no
individual sways the decision with her report. Hence, the externality each individual
imposes on society is zero,6 and what would have been produced without them is
precisely what is produced with them. Indeed, the outcome in which no individual
sways the decision occurs with arbitrarily high probability as the population gets
large, and consequently the generic outcome of the cost-sharing pivotal mechanism
is that everyone pays exactly their fair share of the cost of what is produced.

When everyone pays their fair cost share, cost-sharing universal participation and the
fair pricing principle are immediately satisfied. But the cost-sharing pivotal mecha-
nism also satisfies these conditions globally, no matter the reports of the individuals
and no matter the outcome of the mechanism. Perhaps surprisingly, this mechanism—
including in the special case of an efficient decision rule—is new. Why is it that such
a simple mechanism had not been identified before?

The standard approach to modeling production costs in mechanism design is to ex-
ogenously assign cost shares to individuals, embed these cost shares into their value
for the alternatives, and proceed with the analysis as if there were no production
costs to begin with. Each individual is required to pay their share of the cost of
whatever alternative is chosen, and they simply report their value for each alterna-
tive net of this amount. This quantity is called the individual’s net value, and we
may call this approach the net value approach. The idea is that it is without loss
of generality to study environments without production costs, since production costs
can always be baked into the values in this way.7 Indeed, Green and Laffont (1979,
p. 31) even contend that “there is no real alternative to this approach.” This paper
shows otherwise. In particular, keeping values and costs separate provides a richer
mathematical and conceptual structure which allows for a wider class of desiderata
(e.g., cost-sharing universal participation and the fair pricing principle), mechanisms
(e.g., the cost-sharing pivotal mechanism), and proof techniques (e.g., Theorem 4)
than can be constructed when combining values and costs together.

The most well-known mechanism in the family of Groves mechanisms is the pivotal
mechanism.8 A pivotal mechanism employs an efficient decision rule and charges each
individual the monetary loss she imposes on society, excluding her own monetary
benefits from the public good. Incorporating net values into the pivotal mechanism
produces the Clarke mechanism.9 This has become the canonical mechanism for

6To see this, note that by removing any individual from the welfare benefits, the total welfare
benefit is at least 689,360 which still exceeds the welfare cost of 600,000.

7See Green and Laffont (1979, p. 29). See also Moulin (1988, p. 205), Varian (1992, p. 426), and
Mas-Colell, Whinston and Green (1995, p. 877).

8A pivotal mechanism is also known as a VCG mechanism after Vickrey (1961), Clarke (1971),
and Groves (1973).

9The Clarke mechanism was first proposed by Clarke (1971). I discuss the Clarke mechanism
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public good provision, and, within the class of strategy-proof mechanisms, there has
been little exploration beyond it. Despite that, the Clarke mechanism violates cost-
sharing universal participation, the fair pricing principle, and an even more basic
condition I call no-extortion: if nothing is produced, no one should pay.

Example 1 (The Clarke mechanism violates cost-sharing universal participation, the
fair pricing principle, and no-extortion). Suppose Alice and Benjamin are deciding
whether to construct a public park. The cost of the park is $4, and each individual’s
fair share of the cost is $2. Alice values the park at $0, and Benjamin values the park
at $3. Suppose they have equal welfare weights, so that the utilitarian and efficient
decision rule coincide.

The Clarke mechanism is equivalent to embedding cost shares into individual values,
removing all production costs, and running a pivotal mechanism. Alice values the
park net of her cost share at −$2, and Benjamin values the park net of his cost share
at $1. Taking these as their values, the efficient decision is not to construct the park
(in which case Benjamin’s total welfare is 0) and the efficient decision ignoring Alice’s
preferences is to construct the park (in which case Benjamin’s total welfare is 1), so
Alice’s pivotal transfer is $1.

This violates no-extortion (and hence also the fair pricing principle) since nothing is
produced but Alice must still pay. This violates cost-sharing universal participation
since Alice would strictly prefer to not participate, receive the alternative that would
have been chosen without her (no public good), and pay her fair share of its cost ($0),
rather than to participate, receive no public good, and pay $1. In the cost-sharing
pivotal mechanism, the park is not constructed and Alice and Benjamin both pay
zero. □

The fact that the Clarke mechanism violates such participation and fairness con-
straints is perhaps not surprising, as these criteria, and the solution that comes out
of them, arise from thinking about values and costs separately, while the Clarke mech-
anism arises from combining values and costs into a single term and running a pivotal
mechanism. Given the historic focus on modeling production costs with net values,
and the prevailing view that there is no alternative to this approach, it is perhaps also
not surprising that further exploration in the space of strategy-proof public good pro-
vision mechanisms has not been pursued, as there are few to no natural alternatives
to the Clarke mechanism when using net values.

One notable property of the Clarke mechanism is that it never runs a budget deficit.
Nevertheless, I argue that what really matters for practical large-scale mechanism
design is that future changes to tax policy which balance the budget in the long
run are sufficiently small that they do not affect individuals’ incentives today. I call

and how it compares to the cost-sharing pivotal mechanism in Section 9.3.
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this the approximate budget-balance principle.10 In other words, what really matters
for practical large-scale mechanism design is precisely asymptotic ex-post budget-
balance. Moreover, it turns out that no-deficit and fairness are fundamentally in
conflict: no strategy-proof and utilitarian mechanism can satisfy both no-deficit and
no-extortion.

The key takeaways of the paper are as follows. (i) A utilitarian, rather than merely
efficient, decision rule ought to be considered for the problem of public good pro-
vision. (ii) Costs of producing the public good should be modeled explicitly rather
than embedded in the individuals’ values. In particular, the net value approach is
not without loss. (iii) Standard participation constraints are not well-suited for the
government’s public good provision problem. A new participation constraint, which
I call cost-sharing universal participation, should be used instead. (iv) Fairness con-
straints ought to be explicitly considered in public good provision, constraining what
the government can fairly ask individuals to contribute to the public good. A new
fairness principle, which I call the fair pricing principle, is a natural desiderata for
these environments. (v) The canonical public good provision mechanism—the Clarke
mechanism—violates cost-sharing universal participation, the fair pricing principle,
and an even more basic constraint I call no-extortion: if nothing is produced, no one
should pay. (vi) Contrary to popular wisdom surrounding the provision of public
goods, a natural solution arises to the government’s public good provision problem.
I call it the cost-sharing pivotal mechanism. It is new and, modulo vanishingly small
perturbations, it is unique.

The rest of the paper is organized as follows. Section 2 contains a review of the re-
lated literature on public good provision. Section 3 introduces the model and shows
that, for any strategy-proof and utilitarian mechanism, only willingness to pay can
be elicited and welfare weights and cost shares must be independent of willingness to
pay (Theorem 1). Section 4 introduces the cost-sharing pivotal (CSP) mechanism.
Section 5 introduces cost-sharing universal participation and shows that the CSP
can be characterized as the mechanism which maximizes ex-post revenue among all
mechanisms satisfying strategy-proofness, utilitarianism, and cost-sharing universal
participation (Theorem 2). Section 6 introduces the fair pricing principle and shows
that the CSP can be characterized as the mechanism which maximizes ex-post rev-
enue among all mechanisms satisfying strategy-proofness, utilitarianism, and the fair
pricing principle (Theorem 3). Section 7 shows that the CSP is asymptotically ex-post
budget balanced (Theorem 4) and that no other satisfactory mechanism consistently
comes closer to budget-balance than the CSP (Proposition 5). Section 8 shows that
the CSP is the unique mechanism, up to vanishingly small perturbations, that sat-
isfies strategy-proofness, utilitarianism, cost-sharing universal participation, the fair
pricing principle, and asymptotic ex-post budget-balance (Theorem 5). Section 9 dis-
cusses the net value approach and the Clarke mechanism. Section 10 shows that no

10See Section 7.1 for discussion.
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strategy-proof and utilitarian mechanism can satisfy both no-deficit and no-extortion
(Proposition 6). Section 11 concludes.

2 Related Literature

In this section, I review some of the related literature on the public good provision
problem. Mailath and Postlewaite (1990) consider binary public good environments
and show that in any mechanism satisfying Bayesian incentive-compatibility, interim
individual-rationality, and ex-ante no-deficit, if the cost of the public good increases
linearly with population size or faster, the probability that the public good is produced
goes to zero as the population size goes to infinity—even when the probability that
it is efficient to produce the public good converges to one.11 In a similar vein, Al-
Najjar and Smorodinsky (2000) consider binary public good environments and show
that any mechanism satisfying Bayesian incentive-compatibility, interim individual-
rationality, and no-small-contributors12 cannot raise revenues that are unbounded as
the population size goes to infinity.

Xi and Xie (2023) consider binary public good environments and propose a class of
mechanisms which are strategyproof and ex-post individually rational. They show
that if the cost of provision grows slower than the square root of population size, these
mechanisms generate an ex-ante budget-surplus asymptotically and are asymptoti-
cally efficient, while if the cost grows faster than the square root of population size,
any mechanism which is strategypoof, ex-post individually-rational, and generates an
ex-ante budget-surplus asymptotically must have a provision probability converging
to zero. Kuzmics and Steg (2017) consider binary public good environments and
show that the welfare-maximizing mechanism among all strategy-proof, ex-post in-
dividually rational, and no-deficit mechanisms is what we might call a “unanimous
split-the-cost mechanism,” in which each player has a fixed cost share, the good is
provided if and only if all individuals’ values exceed their own cost share, and each
player pays her cost share if the good is provided and zero otherwise. Notice that
this is a special case of Mailath and Postlewaite (1990), and hence if the cost of the
public good increases linearly with population size or faster, the probability that the
public good is produced in such a mechanism goes to zero as the population size goes
to infinity.

Serizawa (1999) considers continuous public good environments with monotonic and
quasi-concave preferences and characterizes the class of strategy-proof and ex-post
budget-balanced mechanisms which are also symmetric (minimax rule), anonymous
(q-rule), or symmetric and ex-post individually-rational (minimum demand rule).

11See also Hellwig (2003).
12This condition requires that, if an individual’s expected transfer is less than some threshold, the

individual’s expected transfer is zero.
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Laffont and Maskin (1982) show that in binary decision problems with no production
costs, if the population distribution of values is symmetric around zero, the welfare-
maximizing budget-balanced mechanism has a sink agent—an agent who’s preferences
are ignored and who receives the transfers from the other agents—and a decision rule
which is efficient among the remaining agents. Nath and Sandholm (2019) consider
finite decision problems with three or more alternatives and no production costs
and bound the asymptotic inefficiency of strategy-proof mechanisms using strategy-
proof and ex-post budget-balanced mechanisms with a sink agent and a decision
rule which is efficient among the non-sink agents. Moreover, they show that any
strategy-proof and ex-post budget-balanced mechanism has at least one a sink agent.
Drexl and Kleiner (2018) consider binary decision problems with no production costs
and show that the welfare-maximizing mechanism among all anonymous, strategy-
proof, universal participation, and no-deficit mechanisms is qualified majority voting
with threshold k, where k is the ceiling of −nE(θi | θi≤0)

E(θi | θi≥0)−E(θi | θi≤0)
and θi is i’s value for

the project. Note that the use of anonymous mechanisms rules out having a sink
agent.

Rob (1982) considers binary decision environments with no production costs and
shows that the pivotal mechanism is asymptotically efficient—i.e., the probability that
any individual has a positive transfer goes to zero and the expected per capita transfer
goes to zero as the population size goes to infinity.13 This immediately implies an
analogous result for the Clarke mechanism in a binary public good environment with
production costs (using the net value approach to embed costs into values) with equal
cost shares and a cost of the public good which increases linearly with population size.
By contrast, I show that the cost-sharing pivotal mechanism is asymptotically ex-post
budget-balanced in a finite public good environment with arbitrary sequences of costs
and arbitrary sequences of cost shares. See Sections 7.2 and 9.1 for a discussion of
the importance of such robustness.

3 Model

A standard mechanism design environment with transfers is defined by (I, Y, Θ, {vi}i∈I),
where I is a set of n individuals, Y is a set of social alternatives, Θ = Θ1 × . . .×Θn

is a type space, and vi : Y × Θi → R is individual i’s willingness to pay for each
alternative y given her type θi. To analyze the government’s public good provision
problem, I add four elements to the standard environment: observable characteristics,
production costs, fair cost shares, and welfare weights.

A public good provision environment with transfers is defined by

E = (I, Y, Θ, Z, {vi}i∈I , c, {ci}i∈I , {λi}i∈I).
13See also Green, Kohlberg and Laffont (1976), Green and Laffont (1979), and Mitsui (1983).
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where Z = Z1 × . . . × Zn is a space of observable characteristics for each individual
i, c : Y → R is the production cost14 for each alternative y, ci : Y × Z → R is
the amount society has agreed is fair for i to contribute if y is produced (where∑

i∈I ci(y, z) = c(y) for all y, z), and λi : Z → R+ is i’s welfare weight.

Theorem 1 elucidates why cost shares and welfare weights must depend only on ob-
servable characteristics and not on individuals’ private information: any mechanism
which is utilitarian and strategy-proof selects cost shares and welfare weights inde-
pendently of any individual’s private information. That being said, this separation is
also pragmatic. It is important that a public good provision mechanism is simple and
transparent. How fair cost shares and welfare weights are computed should be plain
and easy to understand, and decided by a combination of democratically elected of-
ficials, researchers, and ordinary citizens. See Appendix A for some examples of how
a government might construct fair cost shares from observable characteristics. Alter-
natively, by collecting individual cost shares through the tax system rather than by
an explicit payment, what constitutes a fair cost share can simply be derived from
the current tax system. See Section 11 for a discussion of this method.

An outcome is a social alternative y ∈ Y and a vector of transfers t ∈ Rn representing
the amount each individual i is asked to pay. Individual i’s preferences over outcomes
are quasilinear and represented by ui(y, t, θ) = vi(y, θi)− ti.

A direct revelation mechanism f : Θ → Y × Rn is a mapping from type profiles
to outcomes. Restricting attention to direct revelation mechanisms is without loss
of generality by the revelation principle for dominant strategies.15 In these environ-
ments, f can be represented by a pair f = (α, τ), where α : Θ → Y is a decision
rule and τ : Θ → Rn is a transfer rule. Each individual i reports their type θi to the
mechanism. The mechanism implements social alternative α(θ) at cost c(α(θ)) and
collects transfers τi(θ) from each i.

It is standard in mechanism design to consider an efficient decision rule α(θ) ∈
argmaxy∈Y

∑
i∈I(vi(y, θi)− ci(y, z)). One justification for this is that any other deci-

sion is Pareto dominated by the efficient decision plus some redistributive transfers.
However, in practice governments often do not (or cannot) implement such transfers
and, in the absence of these transfers, the efficient decision rule looses its appeal.16 It
is then important to consider a decision rule which accounts for the fact that a $100
willingness to pay represents a higher welfare benefit to a poorer individual than to

14I might have called this an implementation cost, since, more generally, this is the monetary cost
of implementing a decision (e.g., passing a bill, electing an official, or producing a public good). I
call this a production cost for simplicity, since this is more intuitive when dealing with public goods.

15See, e.g., Gibbard (1973) or Mas-Colell, Whinston and Green (1995, p. 871)
16“Checking that the unweighted sum of WTPi is positive is equivalent to checking that the

individuals who benefit from the change could compensate the losers. This approach has, however,
been completely disqualified by welfare economists. In particular, the fact that compensation could
be made is not a sufficient justification when it is not really made” (Fleurbaey et al., 2013).
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a richer one and, similarly, a $100 tax represents a higher welfare cost to a poorer
individual than to a richer one.

One way to do this is to take a weighted sum of each individual’s willingness to
pay, i.e., α(θ) ∈ argmaxy∈Y

∑
i∈I λi(z)(vi(y, θi) − ci(y, z)). The quasilinear utility

representation λi(z)(vi(y, θi) − ti) can be understood as a first-order approximation
to a more general representation with utility of money ϕi. That is,

ϕi(vi(y, θi)− ti + w) ≈ ϕi(w) + ϕ′
i(w)(vi(y, θi)− ti),

where ϕi is i’s interpersonally comparable utility of money and w is her current
wealth level. Hence, we can think of i’s welfare weight λi as her marginal utility of
income (optionally, with additional inequality aversion baked in) and α as a utilitarian
decision rule.

Definition 1. A decision rule α : Θ → Y is utilitarian if, for all θ, α(θ) ∈ A∗(θ),
where

A∗(θ) = argmax
y∈Y

∑
i∈I

λi(z)(vi(y, θi)− ci(y, z)).

A decision rule α is efficient if α is utilitarian and λi(z) = λj(z) for all i, j ∈ I and
z ∈ Z. A mechanism f = (α, τ) is utilitarian if α is utilitarian.

vi(y, θi) is the monetary value of y to i and, assuming i pays her fair share, ci(y, z)
is the monetary cost of y to i. Scaling this by λi(z) translates monetary units for
i into interpersonally comparable welfare units. The government seeks to maximize
aggregate social welfare. This captures the idea that, as in Figure 1, the welfare-
maximizing decision and the efficient decision may come apart. In particular, a
utilitarian government may seek to produce a good whose monetary costs exceed its
monetary benefits (but whose welfare benefits exceed its welfare costs).

First, notice that the efficient decision rule is a special case of the utilitarian decision
rule when the welfare weights are all equal to one. Second, notice that, unlike with the
efficient decision rule, the choice of cost shares matters for the optimal decision. Costs
borne by richer individuals cause less welfare loss than costs borne by poorer individ-
uals.17 Third, notice that the utilitarian decision rule presupposes that individuals
pay their fair share, even if in fact they may not. This is a simplification which is
sensible when combined with conditions implying that such an outcome occurs with

17One might then think that the richest individual should bear the entire cost of the public good.
While this would indeed inflict the smallest welfare cost on society, it is unlikely to be considered fair
on the whole. An alternative which may better align with fairness principles is that each individual
pays an equal share of their wealth. With log utility of money, this equalizes the welfare costs paid
across individuals.
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arbitrarily high probability, as is the case here.18 This is analogous to an efficient
decision rule, which presupposes that a mechanism is budget-balanced, even if in fact
it may not be. Again, this is a simplification which is sensible when combined with
conditions implying that such an outcome occurs with arbitrarily high probability,
e.g., asymptotic ex-post budget-balance.

We seek incentives for individuals to reveal their private information truthfully, re-
gardless of their beliefs about the other players’ actions or private information. A
mechanism is strategy-proof if it is a dominant strategy for each individual i to report
her type θi truthfully to the mechanism.

Definition 2. A mechanism f = (α, τ) is strategy-proof if for all i, θ′i, θ,

vi(α(θ), θi)− τi(θ) ≥ vi(α(θ
′
i, θ−i), θi)− τi(θ

′
i, θ−i).

We now proceed to state and prove Theorem 1. Let Θi(Y0, Y1) be the set of types θi
such that if y, y′ ∈ Y0 or y, y′ ∈ Y1 then vi(y, θi) = vi(y

′, θi).

Definition 3. An environment admits binary preferences if for each i there exists a
partition {Y0, Y1} of Y such that Θi(Y0, Y1) is non-degenerate, i.e., there exists y0 ∈ Y0,
y1 ∈ Y1, and θi, θ

′
i ∈ Θi(Y0, Y1) such that vi(y1, θi)− vi(y0, θi) ̸= vi(y1, θ

′
i)− vi(y0, θ

′
i).

Note that any environment which admits 1) a completely indifferent type and 2) a type
which strictly prefers some alternative y1 to another y0, where all other alternatives
are either indifferent to y1 or y0, admits binary preferences. Consider any environment
which admits binary preferences. Theorem 1 states that, for any strategy-proof and
utilitarian mechanism, only willingness to pay can be elicited and welfare weights and
cost shares must be independent of willingness to pay.19

Theorem 1. Consider any standard mechanism design environment with transfers.
Let θPi represent private information to individual i which is sufficient to pin down
her willingness to pay for each alternative y ∈ Y . Let θ−P

i represent any additional
information, private or not. Let α be a generalized affine maximizing decision rule of
the form

α(θP , θ−P ) ∈ argmax
y∈Y

∑
i∈I

λi(θ
P , θ−P )vi(y, θ

P
i ) + k(y, θP , θ−P )

18In particular, mechanisms which satisfy strategy-proofness, utilitarianism, asymptotic ex-post
budget-balance, and at least one of cost-sharing universal participation and the fair pricing principle
satisfy the property that individuals pay their fair share with arbitrarily high probability (Theo-
rem 5).

19Roberts (1979) and Carbajal, McLennan and Tourky (2013) both characterize affine maximizing
decision rules as the class of decision rules which are dominant-strategy implementable. However,
neither result applies here because our domain of interest does not satisfy their richness assumptions.
In particular, the assumption that values for the public good are non-decreasing violates Roberts’
(1979) universal domain and Carbajal, McLennan and Tourky’s (2013) flexibility.
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for some λi : Θ
P × Θ−P → R++ and k : Y × ΘP × Θ−P → R. For any environment

that admits binary preferences, α is dominant-strategy implementable if and only if

1. Θ−P is observable and

2. {λi}i∈I and k do not depend on θP .

That is,

α(θP , θ−P ) ∈ argmax
y∈Y

∑
i∈I

λi(θ
−P )vi(y, θ

P
i ) + k(y, θ−P )

for some λi : Θ
−P
i → R++ and k : Y × Θ−P → R, where ΘP is private information

and Θ−P is observable.

Proof. Suppose α(Θ) = {y0, y1}. By Carbajal, McLennan and Tourky (2013, Proposition
1), for any standard environment E ∈ E, α is dominant-strategy implementable if and only
if for all i ∈ I and all θ−i ∈ Θ−i, there exists a threshold Ti(θ−i) ∈ R∪{−∞,+∞} such that
for all θi ∈ Θi, vi(y1, θi)− vi(y0, θi) > Ti(θ−i) implies α(θ) = y1 and vi(y1, θi)− vi(y0, θi) <
Ti(θ−i) implies α(θ) = y0.

Consider any environment that admits binary preferences. Consider any individual i and
any partition {Y0, Y1} of Y such that Θi(Y0, Y1) is non-degenerate. The previous result
implies that α is strategy-proof for i on Θi(Y0, Y1) only if for all θ−i ∈ Θ−i, there exists a
threshold Ti(θ−i) ∈ R∪{−∞,+∞} such that for all θi ∈ Θi(Y0, Y1), vi(Y1, θi)− vi(Y0, θi) >
Ti(θ−i) implies α(θ) ∈ Y1 and vi(Y1, θi) − vi(Y0, θi) < Ti(θ−i) implies α(θ) ∈ Y0, where
vi(Y0, θi) ≡ vi(y0, θi) for any y0 ∈ Y0 and vi(Y1, θi) ≡ vi(y1, θi) for any y1 ∈ Y1.

Let α be a generalized affine maximizing decision rule, let θPi represent private information
to individual i which is sufficient to pin down her willingness to pay for each alternative,
and let θ−P

i represent any additional information, private or not. Let V i
Y0
(θP , θ−P ) be the

value of the affine maximizer within Y0 when i is indifferent between all y0 ∈ Y0, i.e.,

V i
Y0
(θP , θ−P ) = max

y0∈Y0

∑
j ̸=i

λj(θ
P , θ−P )vj(y0, θ

P
j ) + k(y0, θ

P , θ−P ),

and likewise for V i
Y1
(θP , θ−P ). Then20

Ti(·) =
1

λi(θP , θ−P )

(
V i
Y0
(θP , θ−P )− V i

Y1
(θP , θ−P )

)
.

α is strategy-proof only if, for every i, Ti does not depend on i’s private information.
Hence, λi, λj for every j ̸= i, and k cannot depend on θPi . But this holds for every i, so α

20To see this, note that vi(Y1, θ
P
i ) − vi(Y0, θ

P
i ) >

1
λi(θP ,θ−P )

(V i
Y0
(θP , θ−P ) − V i

Y1
(θP , θ−P )) if and

only if

max
y1∈Y1

∑
i∈I

λi(θ
P , θ−P )vi(y1, θ

P
i ) + k(y1, θ

P , θ−P ) > max
y0∈Y0

∑
i∈I

λi(θ
P , θ−P )vi(y0, θ

P
i ) + k(y0, θ

P , θ−P ).
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is strategy-proof only if

α(θP , θ−P ) ∈ argmax
y∈Y

∑
i∈I

λi(θ
−P )vi(y, θ

P
i ) + k(y, θ−P )

for some λi : Θ
−P → R++ and k : Y × Θ−P → R, where ΘP is private information and

Θ−P is observable. To complete the proof, note that this α is an affine maximizer in the
sense of Roberts (1979), so is dominant-strategy implementable. ■

In the upcoming sections, I suppress the dependence of the welfare weights λi and
cost shares ci on observable characteristics z, since this will not be necessary for the
analysis. I reintroduce it in Section 7, where the dependence is key.

4 The Cost-Sharing Pivotal Mechanism

Suppose that the space of admissible values for each i, {vi(·, θi) : θi ∈ Θi}, is convex.
Moreover, suppose that for each i the fully indifferent type, denoted 0 ∈ Θi where
vi(y, 0) = vi(y

′, 0) for all y, y′ ∈ Y , is admissible and that A∗(θ) is non-empty for all
θ. Let EX ⊂ E be the set of such convex public good environments.

For any convex environment, the class of Groves mechanisms21 fully characterizes the
class of strategy-proof and efficient mechanisms (Holmström, 1979), and an immediate
generalization of this result implies that the class of generalized Groves mechanisms
fully characterizes the class of strategy-proof and utilitarian mechanisms.

Definition 4. A mechanism f = (α, τ) is a generalized Groves mechanism if the
decision rule is utilitarian and the transfer rule satisfies, for all i and θ,

τi(θ) = gi(θ−i)−
1

λi

(∑
j ̸=i

λjvj(α(θ), θj)−
∑
k∈I

λkck(α(θ))
)
,

for any function gi : Θ−i → R.

Proposition 1 (Holmström, 1979). Given any convex environment EX ∈ EX , a
mechanism is strategy-proof and utilitarian if and only if it is a generalized Groves
mechanism.

Proof. The proof follows immediately from the proof in Holmström (1979) of the result
that, given any convex environment EX ∈ EX , a mechanism is strategy-proof and efficient
if and only if it is a Groves mechanism. ■

21A mechanism is a Groves mechanism, due to Groves (1973), if the decision rule is efficient and
the transfer rule satisfies, for all i and θ, τi(θ) = gi(θ−i) − (

∑
j ̸=i vj(α(θ), θj)) −

∑
k∈I ck(α(θ)) for

some gi : Θ−i → R.
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Recall that multiplying by λi translates monetary units of value for i into interper-
sonally comparable welfare units and dividing by λi does the reverse. A generalized
Groves mechanism subsidizes each individual i her monetary equivalent of the social
welfare value of the public good, excluding her own welfare benefits, minus a term
that is constant in her report.22 Since i’s total welfare consists of her welfare from
the decision minus her welfare cost from her payment, her total welfare is precisely
equal to social welfare minus a constant that does not depend on her report. That
is,

λi(vi(α(θ), θi)−τi(θ)) = λivi(α(θ), θi)+
∑
j ̸=i

λjvj(α(θ), θj)−
∑
k∈I

λkck(α(θ))−λigi(θ−i),

and so i’s and society’s incentives are perfectly aligned.

The most well-known mechanism within the Groves class—the pivotal mechanism—
chooses gi(θ−i) to equal the social monetary value of the efficient decision made when
ignoring her preferences, excluding her own monetary benefits from the public good.23

This implies that an individual’s transfer is always non-negative. Like with the Groves
mechanisms, we can generalize the pivotal mechanism to employ a utilitarian, rather
than merely efficient, decision rule as follows.

Definition 5. A mechanism f = (α, τ) is a generalized pivotal mechanism if the
decision rule is utilitarian and the transfer rule satisfies, for all i and θ,

τi(θ) =
1

λi

(∑
j ̸=i

λjvj(α(0, θ−i), θj)−
∑
k∈I

λkck(α(0, θ−i))
)

− 1

λi

(∑
j ̸=i

λjvj(α(θ), θj)−
∑
k∈I

λkck(α(θ))
)
.

A generalized pivotal mechanism charges each individual i her monetary equivalent
of the welfare loss she imposes on society, excluding her own welfare benefits from the
public good. In particular, a generalized pivotal mechanism charges i her monetary
equivalent of the difference in social welfare between the utilitarian decision made

22Note that i’s (generalized) Groves transfer can be equivalently defined as a (generalized) pivotal
transfer plus a term that is constant in her report, as I do in Section 1. Relative to how it is defined
here, this simply bakes an additional constant into the constant term.

23A mechanism is a pivotal mechanism, also known as a VCG mechanism, if the decision
rule is efficient and the transfer rule satisfies, for all i and θ, τi(θ) =

∑
j ̸=i vj(α(0, θ−i), θj) −∑

k∈I ck(α(0, θ−i)) − (
∑

j ̸=i vj(α(θ), θj)) −
∑

k∈I ck(α(θ)). Note that in the literature, the pivotal
mechanism is sometimes defined differently in different contexts. Indeed, it is often taken to be equiv-
alent to the Clarke mechanism (see, e.g., Mas-Colell, Whinston and Green (1995, p. 878)), which is
not equivalent to the pivotal mechanism as defined here. I disambiguate these two mechanisms in
Appendix B.
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when ignoring her preferences and the utilitarian decision made when considering her
preferences, excluding her own welfare benefits from the public good.

The pivotal mechanism earns its name from the fact that it only charges individuals
a non-zero amount if they are pivotal, i.e., if the decision changes when taking their
preferences into account.

Definition 6. Given a mechanism f = (α, τ) and type profile θ ∈ Θ, an individual i
is pivotal if α(0, θ−i) ̸= α(θ).

As we will see in Section 7.3, the probability that any individual is pivotal goes to
zero as the population gets large (Proposition 4). Hence, the generalized pivotal
mechanism raises no revenue in large populations. We would like to raise exactly the
amount of revenue necessary to implement the chosen alternative. Recall that the
only flexibility—if we are to design a strategy-proof and utilitarian mechanism—is in
choosing gi(θ−i), which does not depend on i’s report. This sets the stage for a new
mechanism, which I call the cost-sharing pivotal mechanism.

The cost-sharing pivotal mechanism adds an additional term to i’s transfer in the
generalized pivotal mechanism. It adds ci(α(0, θ−i))—i’s fair share of the cost of
what would have been produced without her. As a result, when no one is pivotal,
the cost-sharing pivotal mechanism charges each individual precisely her fair share
of the cost of what is produced and is ex-post budget-balanced in large populations
(Theorem 4).

In fact, the cost-sharing pivotal mechanism is the unique solution to the public good
provision problem as laid out in Section 1. That is, the cost-sharing pivotal mech-
anism is the unique mechanism—up to vanishingly small perturbations—which sat-
isfies strategy-proofness, utilitarianism, cost-sharing universal participation, the fair
pricing principle, and asymptotic ex-post budget-balance (Theorem 5).

Definition 7. A mechanism f = (α, τ) is a cost-sharing pivotal mechanism (CSP) if
the decision rule is utilitarian and the transfer rule satisfies, for all i and θ,

τi(θ) =
1

λi

(∑
j ̸=i

λjvj(α(0, θ−i), θj)−
∑
k∈I

λkck(α(0, θ−i))
)

− 1

λi

(∑
j ̸=i

λjvj(α(θ), θj)−
∑
k∈I

λkck(α(θ))
)
+ ci(α(0, θ−i)).

The cost-sharing pivotal mechanism employs a utilitarian decision rule and charges
each individual her monetary equivalent of the welfare loss she imposes on society,
excluding her own welfare benefits from the public good, plus her fair share of the
cost of what would have been produced without her.
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Figure 2 depicts the cost-sharing pivotal mechanism graphically for the case of a
continuous public good y. MSB = 1

λi

∑
k λkv

′
k(y, θk) is the monetary equivalent to i

of the marginal social benefit of the public good. MSB−i =
1
λi

∑
j ̸=i λjv

′
j(y, θj) is the

monetary equivalent to i of the marginal social benefit of the public good excluding i.
MSC = 1

λi

∑
k∈I λkc

′
k(y) is the marginal social cost of the public good when everyone

pays their fair share of its cost. c′i is i’s marginal fair cost share. α(θ) is the utilitarian
decision. α(0, θ−i) is the utilitarian decision without i.

MSB

MSB−i

MSC

c′i

α(0, θ−i) α(θ)
y

$
Cost-Sharing Pivotal Mechanism

Figure 2

The cost-sharing pivotal mechanism implements α(θ) and charges i the welfare loss
she imposes on society excluding her own welfare benefits from the public good (the
area in red), plus her fair share of the cost of what would have been produced without
her (the area in green). The generalized pivotal mechanism, by comparison, charges
i only the former (the area in red).

5 Participation

The second desiderata in the government’s public good provision problem is partici-
pation, i.e., that the mechanism provides incentives for each individual to participate
in the process. In this section, I introduce a new participation constraint called cost-
sharing universal participation, which states that each individual should always prefer
to participate in the mechanism rather than to not participate, receive the alternative
that would have been chosen without her, and be taxed her fair share of its cost. I
show that the cost-sharing pivotal mechanism can be characterized as the mechanism
which maximizes ex-post revenue among all mechanisms satisfying strategy-proofness,
utilitarianism, and cost-sharing universal participation (Theorem 2).
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Participation constraints require that each individual prefers to participate in the
mechanism rather than to not participate and receive some outside option. Hence,
what distinguishes these constraints from each other is the outside option. The most
commonly used participation constraint in mechanism design is individual rationality,
where the outside option is some fixed outcome with a payoff of zero—i.e., to consume
nothing and to pay nothing.

Definition 8. A mechanism f = (α, τ) is individually-rational if for all i, θ,

vi(α(θ), θi)− τi(θ) ≥ 0.

Individual rationality says that an individual should prefer to participate in the mech-
anism rather than to consume nothing and pay nothing. This is fitting, for example,
in an auction setting, where the outcome from not participating is, in fact, to consume
and pay nothing. However, it is not fitting in a public goods setting where—since pub-
lic goods are by definition non-rival and non-excludable—each individual consumes
what the mechanism implements no matter if they participate or not.

Another participation constraint used in the literature is universal participation,
which is designed to capture the non-rivalry and non-excludability of public goods.24

Under universal participation, the outside option is precisely that the individual con-
sumes whatever the mechanism would have implemented without her.

Definition 9. A mechanism f = (α, τ) satisfies universal participation if for all θ
and i,

vi(α(θ), θi)− τi(θ) ≥ vi(α(0, θ−i), θi).

Universal participation says that an individual should prefer to participate in the
mechanism rather than to consume what would have been produced without her and
pay nothing. This assumes that the implementer has no ability to tax individuals who
do not participate in the mechanism. While this is true in some public good settings—
for instance, a group of friends deciding which couch to buy for their apartment—this
is not true for a government’s public good provision problem. Indeed, in practice many
public goods are funded by tax dollars which violate universal participation (e.g., my
tax dollars may go to fund a park for which I have zero value).

I propose a new participation constraint, which I call cost-sharing universal partic-
ipation, in which the outside option is that the individual consumes whatever the
mechanism would have implemented without her and is taxed her fair share of its
cost.

24See Green and Laffont (1979, Chapter 6) for a similar discussion of individual rationality and
universal participation. Universal participation is sometimes called no-free-ride (see, e.g., Moulin
(1986)).
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Definition 10. A mechanism f = (α, τ) satisfies cost-sharing universal participation
(CS-UP) if for all θ and i,

vi(α(θ), θi)− τi(θ) ≥ vi(α(0, θ−i), θi)− ci(α(0, θ−i)).

Cost-sharing universal participation says that an individual should prefer to partic-
ipate in the mechanism rather than to consume what would have been produced
without her and be taxed her fair share of its cost. This captures the idea that, by
not participating, an individual avoids neither her consumption of the good that is
eventually produced nor the taxes the government levies to fund it. What she does
avoid is any alterations to her tax payment the government may impose as a function
of her report to the mechanism.

Indeed, one useful way to implement a public good provision mechanism in practice
is to collect each individual’s fair cost share through the existing tax system, rather
than to charge each individual an explicit payment through the mechanism itself. I
discuss this further in Section 11.

The cost-sharing pivotal mechanism satisfies cost-sharing universal participation. In
fact, the cost-sharing pivotal mechanism can be characterized as the mechanism which
maximizes ex-post revenue among all mechanisms satisfying strategy-proofness, util-
itarianism, and cost-sharing universal participation. In a similar fashion, the gener-
alized pivotal mechanism can be characterized as the mechanism which maximizes
ex-post revenue among all mechanisms satisfying strategy-proofness, utilitarianism,
and universal participation.

Theorem 2. Given any convex environment EX ∈ EX ,

1. a mechanism maximizes ex-post revenue among all mechanisms which satisfy
strategy-proofness, utilitarianism, and universal participation if and only if it is
a generalized pivotal mechanism; and

2. a mechanism maximizes ex-post revenue among all mechanisms which satisfy
strategy-proofness, utilitarianism, and cost-sharing universal participation if and
only if it is a cost-sharing pivotal mechanism.

Proof. Part I. Given any convex environment EX ∈ EX , a mechanism f is strategy-proof
and utilitarian if and only if it is a generalized Groves mechanism by Proposition 1. Let
f = (α, τ) be a generalized Groves mechanism with τi(θ) = gi(θ−i)− 1

λi
[
∑

j ̸=i λjvj(α(θ), θj)−∑
k∈I λkck(α(θ))] for some gi : Θ−i → R. We would like to construct gi(θ−i) to maximize

revenue subject to universal participation. In particular,

gi(θ−i) = inf
θi∈Θi

vi(α(θ), θi) +
1

λi

(∑
j ̸=i

λjvj(α(θ), θj)−
∑
k∈I

λkck(α(θ))
)
− vi(α(0, θ−i), θi).
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Plugging θi = 0 into the objective function, we have 1
λi
[
∑

j ̸=i λjvj(α(0, θ−i), θj)−
∑

k∈I λkck(α(0, θ−i))],
which is indeed the minimum since by definition of α, for all θi,

λivi(α(θ), θi) +
∑
j ̸=i

λjvj(α(θ), θj)−
∑
k∈I

λkck(α(θ))

≥ λivi(α(0, θ−i), θi) +
∑
j ̸=i

λjvj(α(0, θ−i), θj)−
∑
k∈I

λkck(α(0, θ−i)),

which holds if and only if for all θi,

vi(α(θ), θi) +
1

λi

(∑
j ̸=i

λjvj(α(θ), θj)−
∑
k∈I

λkck(α(θ))
)
− vi(α(0, θ−i), θi)

≥ 1

λi

(∑
j ̸=i

λjvj(α(0, θ−i), θj)−
∑
k∈I

λkck(α(0, θ−i))
)
.

Hence, gi(θ−i) =
1
λi
[
∑

j ̸=i λjvj(α(θ), θj)−
∑

k∈I λkck(α(θ))] as desired. □

Part II. The proof follows analogously as in Part I. □ ■

As we will see in the upcoming sections, in addition to satisfying cost-sharing univer-
sal participation, the cost-sharing pivotal mechanism is the unique mechanism (up
to vanishingly small perturbations) that satisfies strategy-proofness, utilitarianism,
the fair pricing principle, and asymptotic ex-post budget-balance alone. Given this,
another way to think about the content of this section is the following. We use the
cost-sharing pivotal mechanism because it is the unique mechanism which satisfies
the previous four desiderata, and, in order to give individuals dominant-strategy in-
centives to participate, we design what the mechanism will do if an individual does
not participate.

Suppose first that the government can implement any alternative and tax any indi-
vidual any amount regardless of if they participate. Then it could make sense to tax
those who do not participate the transfer they would have been charged had they
reported the average value among those who did participate (optionally, with similar
observable characteristics) and to implement this alternative. Since the mechanism is
strategy-proof, this gives them dominant-strategy incentives to participate, and in the
event that they don’t participate due to unforeseen circumstances or just by random
chance, this estimates their value based on the data from the individuals who did
participate and implements the utilitarian alternative given this estimate. Of course,
if individuals are not missing at random (e.g., because those with lower monetary
values, conditional on observables, do not participate at a higher rate), this estimate
will be biased.

Suppose next that the government can only tax individuals who do not participate
their fair share of the cost of what is implemented without them. This could be, for

20



example, because individuals are taxed their fair cost share through the tax system
itself (see Section 11). Then the question becomes: what decision rule α−i : Θ−i →
Y should the government use if an individual i does not participate? We know
that the cost-sharing pivotal mechanism satisfies cost-sharing universal participation
(Theorem 2), so α−i(θ−i) = α(0, θ−i) will always give individuals a dominant-strategy
to participate. But there are other α−i that work too.25 That said, most don’t, and
in particular the decision rule which takes i to have the average value among those
who did participate, as mentioned in the previous paragraph, does not.

6 Fairness

The fifth desiderata in the government’s public good provision problem is fairness,
i.e., that the mechanism does not ask anyone to pay what has been deemed an unfair
amount. In this section, I introduce a new fairness principle called the fair pricing
principle, which states that each individual should never pay more than her mone-
tary value for what is produced or her fair share of its cost, whichever is larger. I
show that the cost-sharing pivotal mechanism can be characterized as the mechanism
which maximizes ex-post revenue among all mechanisms satisfying strategy-proofness,
utilitarianism, and the fair pricing principle (Theorem 3).

Suppose that the space of social alternatives is unidimensional and continuous. That
is, let Y = R+ represent the quantity and/or quality of the public good to be pro-
duced. Moreover, suppose that for each i and θi, vi is absolutely continuous and
non-decreasing in y with vi(0, θi) normalized to 0 for all θi. Likewise, suppose that
costs c and fair shares ci for each i are absolutely continuous and non-decreasing
with c(0) normalized to 0.26 Let EC ⊂ EX be the set of such continuous public good
environments.

In addition to giving individuals incentives to participate, a participation constraint
can also be interpreted as requiring that a mechanism satisfy some notion of fairness.
The most commonly used participation constraint in mechanism design is individual
rationality. Interpreted as a fairness constraint, individual rationality can be rewritten
as follows.

25For a given α−i(θ−i), suppose there exists θ∗i ∈ Θi such that α(θ∗i , θ−i) = α−i(θ−i). Then if i is
of type θ∗i , the payoff of reporting θ∗i must be no less than the payoff of not participating. Hence,
one α−i that gives dominant-strategy incentives to participate is one which produces the same or
more of the public good than would have been produced without i, α−i(θ−i) = α(0, θ−i) + δ for
δ ≥ 0, as long as i’s pivotal payment from reporting such a θ∗i is no larger than the increase in her
fair cost share, ci(α−i(θ−i)) − ci(α(0, θ−i)). Clearly, δ = 0 always works, but for some θ−i, δ > 0
also works.

26Hence, vi(y, θi) =
∫ y

0
v′i(z, θi) dz for all i, c(y) =

∫ y

0
c′(z) dz, and ci(y) =

∫ y

0
c′i(z) dz for all i.
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Definition 11. A mechanism f = (α, τ) is individually-rational if for all i, θ,

τi(θ) ≤ vi(α(θ), θi) =

∫ α(θ)

0

v′i(y, θi) dy.

Individual rationality states that it is fair for an individual to pay up to her total
monetary value for what is produced and no more. This is arguably too demanding
for public good environments. Such environments are commonly characterized by a
sense of community, wherein each individual understands that everyone needs to chip
in—but not unreasonably so—for the greater good, even if that means paying more
than their monetary value for the public good. Although I may not value the new
park or library in the neighborhood, I understand that if my community decides it is
worthwhile to produce, I will be asked—and I ought—to chip in my fair share.

I propose the following principle, which I call the fair pricing principle, to capture
this sentiment. The fair pricing principle states that it is fair for an individual to
pay up to her total monetary value for what is produced or her fair share of its cost,
whichever is larger.

Definition 12. A mechanism f = (α, τ) satisfies the fair pricing principle (FPP) if
for all i, θ,

τi(θ) ≤ max
{
vi(α(θ), θi), ci(α(θ))

}
= max

{∫ α(θ)

0

v′i(y, θi) dy,

∫ α(θ)

0

c′i(y) dy
}
.

In other words, the fair pricing principle states that it is fair to ask an individual to
pay up to her fair share of the cost of what is produced—and it is also fair to ask an
individual to pay more, as long as this amount is less than her total monetary value
for what is produced.

I now define two progressively weaker notions of fairness. The first I call the fair
pricing principle per unit. The second I call no-extortion. The fair pricing principle
per unit captures the same sentiment as the fair pricing principle, but unit by unit.

Definition 13. A mechanism f = (α, τ) satisfies the fair pricing principle per unit
(FPP per unit) if for all i, θ,

τi(θ) ≤
∫ α(θ)

0

max
{
v′i(y, θi), c

′
i(y)

}
dy.

The fair pricing principle per unit says that for each unit of the public good, it is fair
for an individual to pay up to her marginal value for that unit or her fair share of its
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marginal cost, whichever is larger. Since the maximum is taken unit by unit, this is
a strictly weaker condition than the fair pricing principle, as this allows, for instance,
that an individual be taxed her fair share for the first marginal unit of the good and
taxed her marginal value for the second—which may total more than the maximum
of her fair share and her value for both units of the good (see Example 3).

The second I call no-extortion. No-extortion is a minimal standard of fairness in
public good environments. It applies the fair pricing principle only to the case when
no public good is produced. It says that if nothing is produced, no one should
pay.27

Definition 14. A mechanism f = (α, τ) satisfies no-extortion (NE) if when nothing
is produced, no one pays. That is, α(θ) = 0 implies τi(θ) ≤ 0 for all i.

It is clear that individual rationality implies the fair pricing principle which implies
the fair pricing principle per unit which implies no-extortion. At this point, one
might be wondering if cost-sharing universal participation also implies no-extortion.
The answer is yes, but with a minor qualification. This qualification turns out to be
important for fairness in general. I discuss it now.

In a continuous public good environment, it is intuitive that if i’s marginal value
increases everywhere, all else fixed, a utilitarian decision rule would never select a
strictly smaller amount of the public good. This intuition is nearly correct, but for a
technical reason not entirely so. It is true if the set of utilitarian decisions is always a
singleton, but it is not true in general. What is true is that increasing an individual’s
marginal value increases the set of utilitarian decisions in the strong set order.28

Proposition 2. Given any continuous environment EC ∈ EC, if v
′
i(y, θ̂i) ≥ v′i(y, θi)

for all i, y, and θi, then A∗(θ̂) ≥ A∗(θ) in the strong set order.

Proof. For any θ, y∗ ∈ A∗(θ) if and only if for any y′ ≤ y∗ ≤ y′′,∫ y∗

y′

∑
i∈I

λiv
′
i(y, θi)− λic

′
i(y) dy ≥ 0 ≥

∫ y′′

y∗

∑
i∈I

λiv
′
i(y, θi)− λic

′
i(y) dy.

27One might think that it is perfectly reasonable to charge a payment to an individual who sways
the decision towards something they prefer. With negative monetary values, it is possible to sway the
decision from producing the good to not. One could then define no-extortion with the prerequisite
that i weakly prefers having any amount of the good to not. That is, a mechanism satisfies no-
extortion if, for any i and θi such that vi(y, θi) ≥ vi(0, θi) for all y, α(θ) = 0 implies τi(θ) ≤ 0. In
this and all subsequent sections, I consider the case of non-negative (indeed, non-decreasing) values.
Hence, for simplicity I define no-extortion without this prerequisite. It is immediate that all the
results in this paper hold identically for either definition.

28For any A,B ⊆ R, A ≤ B in the strong set order if for any a ∈ A and b ∈ B, min{a, b} ∈ A and
max{a, b} ∈ B. See Milgrom and Shannon (1994).
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That is, y∗ is utilitarian if and only if moving from any y′ ≤ y∗ to y∗ weakly increases total
welfare and moving from y∗ to any y′′ ≥ y∗ weakly decreases total welfare.

Suppose v′i(y, θ̂i) ≥ v′i(y, θi) for all i, y, and θi, y
∗ ∈ A∗(θ), ŷ∗ ∈ A∗(θ̂), and ŷ∗ ≤ y∗. Then∫ y∗

ŷ∗

∑
i∈I

λiv
′
i(y, θi)− λic

′
i(y) dy ≥ 0

≥
∫ y∗

ŷ∗

∑
i∈I

λiv
′
i(y, θ̂i)− λic

′
i(y) dy ≥

∫ y∗

ŷ∗

∑
i∈I

λiv
′
i(y, θi)− λic

′
i(y) dy

where the first inequality follows since y∗ ∈ A∗(θ), the second since ŷ∗ ∈ A∗(θ̂), and the
third since v′i(y, θ̂i) ≥ v′i(y, θi) for all i, y, and θi. Hence, y

∗ ∈ A∗(θ̂) and ŷ∗ ∈ A∗(θ). ■

Because a utilitarian decision rule can select any utilitarian decision, nothing prevents
it from selecting a strictly smaller amount of the public good when marginal values
increase, provided this remains in the set of utilitarian decisions. A trivial example is
if an increase in i’s marginal value doesn’t change the set of utilitarian decisions. In
such a case, a utilitarian decision rule may very well select a strictly smaller amount.
It turns out that such decision rules will cause problems for fairness, in the sense
of violating no-extortion or any of the stronger notions above (Example 2). This
motivates the following definition, which aligns utilitarian decision rules with our
intuition.

Definition 15. A decision rule α : Θ → R+ is monotone if v′i(y, θ̂i) ≥ v′i(y, θi) for all
y and i implies α(θ̂) ≥ α(θ).

A decision rule is monotone if increasing any individual’s value function pointwise
never decreases the decision. With a non-monotone decision rule, the cost-sharing
pivotal mechanism violates no-extortion.

Example 2 (With a non-monotone decision rule, the cost-sharing pivotal mechanism
violates no-extortion). Let I = {i, j} and Y = {0, 1, 2}, representing no park, a small
park, and a large park, respectively. Let λi = λj = 1, so that the utilitarian and
efficient decision rule coincide. The cost of the small park is 10 and the cost of the
large park is 20, and each individual’s fair share is 5 for the small park and 10 for
the large park. Individual i values the small park at 0 and the large park at 2, and
individual j values the small park at 10 and the large park at 15. Given this, the set
of utilitarian decisions is {0, 1}. Both no park and the small park result in a total
welfare of zero, which is optimal. Suppose α selects 0—no park.

Ignoring i’s preferences, the set of utilitarian decisions remains unchanged. Suppose
α is non-monotonic and for this type profile selects 1—the small park. The cost-
sharing pivotal mechanism charges i the welfare loss imposed on society, excluding
her own benefits from the public good, when taking her preferences into account (0,
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since social welfare, minus i’s, is zero both with no park and the small park) plus her
fair share of the cost of what would have been produced without her (5, her fair cost
share of the small park), violating no-extortion. □

With a monotone decision rule, cost-sharing universal participation indeed implies
no-extortion.

Fact 1. Given any continuous environment EC ∈ EC, if the decision rule is monotone,
cost-sharing universal participation implies no-extortion.

Proof. Suppose α(θ) = 0. Since α is monotone, α(0, θ−i) = 0. Then cost-sharing universal
participation implies τi(θ) ≤ 0 as desired. ■

With a monotone decision rule, the cost-sharing pivotal mechanism satisfies no-
extortion and the fair pricing principle per unit, but it violates the fair pricing princi-
ple (Example 3). That said, the cost-sharing pivotal mechanism satisfies the fair pric-
ing principle under the natural assumption that marginal values are non-increasing
and marginal costs are non-decreasing.

Assumption 1. v′i(y, θi) is non-increasing in y for all i and θi, and c′(y) and c′i(y)
are non-decreasing for all i.

Note that in the special case of a binary public good environment—where a public
good can either be produced or not—Assumption 1 always holds.

Example 3 (Without Assumption 1, the cost-sharing pivotal mechanism violates
the fair pricing principle). Let I = {i, j} and Y = {0, 1, 2}, representing no park, a
small park, and a large park, respectively. Let λi = λj = 1, so that the utilitarian
and efficient decision rule coincide. The cost of the small park is 10 and the cost of
the large park is 20, and each individual’s fair share is 5 for the small park and 10
for the large park. Individual i values the small park at 0 and the large park at 11
(violating Assumption 1), and individual j values the small park at 11 and the large
park at 11. Total welfare is 0 with no park, 0 + 11− 10 = 1 with the small park, and
11 + 11− 20 = 2 with the large park, so the large park is the utilitarian decision.

Ignoring i’s preferences, the small park would be produced for a total welfare, minus
i’s, of 1. With i, the large park is produced for a total welfare, minus i’s, of 11−20 =
−9. The cost-sharing pivotal mechanism charges i the welfare loss imposed on society,
excluding her own benefits from the public good, when taking her preferences into
account (1 − (−9) = 10) plus her fair share of the cost of what would have been
produced without her (5), for a total of 15. This violates the fair pricing principle,
which requires that i pay no more than the maximum of her value and her fair share
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of the cost of what is produced (11 and 10, respectively).29 □

In Theorem 2, we showed that the cost-sharing pivotal mechanism can be charac-
terized as the mechanism which maximizes ex-post revenue among all mechanisms
satisfying strategy-proofness, utilitarianism, and cost-sharing universal participation.
Perhaps surprisingly, it is also true that the cost-sharing pivotal mechanism can be
characterized as the mechanism which maximizes ex-post revenue among all mecha-
nisms satisfying strategy-proofness, utilitarianism, and the fair pricing principle.

Theorem 3. Consider any continuous environment EC ∈ EC and any utilitarian
and monotone decision rule α. A mechanism f = (α, τ) maximizes ex-post revenue
among all mechanisms which satisfy strategy-proofness, utilitarianism, and the fair
pricing principle per unit if and only if it is a cost-sharing pivotal mechanism. Under
Assumption 1, the same holds replacing the fair pricing principle per unit with the
fair pricing principle.

Comments on Proof. The proof proceeds similarly as in Theorem 2, albeit with several
more cases. ■

7 Budget-Balance

The fourth desiderata in the government’s public good provision problem is budget-
balance, i.e., that the mechanism raises exactly the amount of revenue necessary to
produce the desired quantity of the public good. In this section, I show that the
cost-sharing pivotal mechanism is asymptotically ex-post budget balanced. That is,
the probability of ex-post budget-balance goes to one and the expected distance from
ex-post budget-balance per capita goes to zero as the population size goes to infinity
(Theorem 4). Moreover, I show that no other mechanism satisfying the desired criteria
consistently comes closer to budget-balance than the cost-sharing pivotal mechanism
(Proposition 5).

The rest of the section is organized as follows. First, I discuss why asymptotic ex-post
budget-balance is an appropriate desiderata for the government’s public good provi-
sion problem. Second, I discuss two important features of the asymptotic analysis.
Third, I present the formal model and results.

7.1 The Approximate Budget-Balance Principle

It is common in the literature on public good provision to restrict attention to mecha-
nisms which never run a budget deficit. This is often simply termed feasibility. I want

29On the other hand, the fair pricing principle per unit requires that i pay no more than the
maximum of her marginal value and her marginal fair cost share for each marginal unit of what is
produced—i.e., she can pay up to 5 for the first unit and up to 11 for the second (up to 16 total).
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to argue that in public good provision environments with large populations, this is an
inappropriate notion of feasibility. In most such environments, surpluses and deficits
ultimately trickle down to the citizens. What matters is that their incentives are pre-
served in light of this fact. This inspires what I call the approximate budget-balance
principle.

I propose that governments can finance small deficits and distribute small surpluses
through future changes to tax policy that are sufficiently inconsequential so as not to
affect the incentives of their citizens. That is, violations of budget-balance in either
direction are feasible, as long as they are small. One way to understand this is that
governments maintain a fund capable of absorbing small deficits and surpluses. Over
time, any accumulated surplus is repaid through tax cuts, while any accumulated
deficit is replenished through tax increases. If these adjustments are small and indi-
rect,30 it is reasonable to assume that individuals do not perceive them as part of the
mechanism.

Approximate Budget-Balance Principle. Sufficiently small and indi-
rect changes to tax policy are not perceived by individuals as part of their
transfer and hence do not affect their incentives. Approximate budget-
balance is thus as good in practice as exact budget-balance.

Under the approximate budget-balance principle, if the expected distance from ex-
post budget-balance per capita is sufficiently small, the mechanism is feasible. It is
not particularly important that a mechanism never runs a budget deficit. Arguably,
this is even somewhat of a red herring. In fact, never running a budget deficit and
fairness turn out to be fundamentally in conflict: no strategy-proof and utilitarian
mechanism can satisfy both no-deficit and no-extortion (Proposition 6).

7.2 Discussion of Analysis

To analyze the asymptotic behavior of the cost-sharing pivotal mechanism as the
population gets large, I consider sequences of public good environments with increas-
ing population size n, where the private information and observable characteristics
of each individual are drawn from some joint distribution which is unknown to the
government. Two important features of this analysis are 1) that the cost of the pub-
lic goods can vary arbitrarily with n and 2) that welfare weights and cost shares can
depend arbitrarily on observable characteristics, and observable characteristics are
correlated arbitrarily with types.31 I discuss each below.

30Changes can be indirect in several ways. For example, they can be indirect in context (changes
to tax policies not related to public good provision mechanisms) and indirect in time (changes occur
sufficiently far into the future).

31Moreover, I discuss in Section 9.1 how a common methodological simplification in mechanism
design, the net-value approach, cannot accommodate either.
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The cost of the public good can vary arbitrarily with population size. It
is common that asymptotic results involving sequences of public good environments
depend on how the sequence of cost functions grows with n.32 Importantly, the results
here hold no matter how costs grow with n. To see the relevance of this distinction,
consider for simplicity a binary public good environment in which a public good can
either be produced or not. We do not know the population distribution of values. We
would like to talk about what happens in large populations for any such distribution.
That is, we would like to learn about what happens as we increase the number of
i.i.d. draws from any distribution holding all else constant. But what does it mean
to hold all else constant? In particular, what about the relationship between the
population size and the cost of the public good, if anything, should remain constant
as we increase n?

If we assume costs grow very slowly or not at all, then as the population grows large,
the utilitarian decision is almost surely to produce the good, making the public good
provision problem trivial, no matter the underlying population distribution. If it is
optimal to produce the good with arbitrarily high probability, we do not need to elicit
individuals’ preferences—we can simply produce the good and tax everyone their fair
share. Similarly, if we assume costs grow sufficiently quickly, then as the population
grows large, the utilitarian decision is almost surely not to produce the good, again
trivializing the problem—we can simply not produce the good. To avoid this situation
in which the chosen sequence of cost functions plays a significant (and artificial) role
in the analysis, we would like our results to be robust to any such sequence.33

Welfare weights and cost shares can vary arbitrarily with observables. So
far, the fact that welfare weights and cost shares can depend arbitrarily on observable
characteristics has not played a role in the analysis. But this will no longer be the
case, as we will need to make statements about deviations from budget-balance, and
this depends on individuals’ welfare weights and cost shares—and, in particular, on
how they correlate with individuals’ types.

Notably, the commonly assumed special case of equal cost shares, ci(y) = c(y)/n
for all i, assumes away an important dimension of fair public good provision—that
fair cost shares may depend on observables, and observables may be correlated with
types. To gain some intuition, consider a cost-sharing pivotal mechanism with equal
cost shares. It might be that the expected distance from ex-post budget-balance is
small because almost everyone is not pivotal and so pays their equal share, the sum
of which approaches the full cost as the population gets large. However, now suppose
an individual’s fair share is determined by her income, which is highly correlated with

32See, e.g., Mailath and Postlewaite (1990) and Xi and Xie (2023).
33Arguably, if anything should be held constant, it is precisely the probability that the utilitarian

decision is to produce the good. That is, we would like P(αn(θn) = y) to be constant in n for each
y. Computing sequences of cost functions with this property is not easy. Luckily, we do not have to
compute such a sequence, as the result is robust across all sequences.
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her value for the public good. In particular, suppose that those who tend to be pivotal
(due to high values for the good) tend to have much larger fair shares, leaving much
smaller fair shares for everyone else. Now, even if almost everyone is not pivotal,
they will pay a much smaller sum in total, and this amount may not approach the
full cost. In particular, the cost-sharing pivotal mechanism might be asymptotically
ex-post budget-balanced in the former case but not the latter.

Encouragingly, the results herein are robust to each of the aforementioned concerns.
Theorem 4 shows that the cost-sharing pivotal mechanism is asymptotically ex-post
budget-balanced no matter how the cost of the public goods vary with n, no matter
how welfare weights and fair cost shares are constructed from observables, and no
matter how types and observables are correlated.

7.3 Formal Analysis

Suppose that the space of social alternatives is unidimensional and finite. That is,
let Y = {0, 1, . . . , ȳ} for some ȳ ∈ N represent the quantity and/or quality of the
public good to be produced. For each i and θi, vi is non-decreasing in y with vi(0, θi)
normalized to 0 for all θi. For notational convenience, let Θi ⊆ Rȳ+1

+ and vi(y, θi) =
θi(y) for all i and y, where θi(y) is the yth component of θi. Costs c and fair shares
ci for each i are non-decreasing with c(0) normalized to 0. Let EF ⊂ EC be the set
of such finite public good environments.34

A sequence of public good provision environments with transfers is defined by

En = (In, Y n,Θn, Zn, {vni }i∈I , cn, {cni }i∈I , {λn
i }i∈I).

For each n ∈ N, let there be n individuals with the same type space Θ0 ⊆ Rȳ
+ and

the same arbitrary set of observable characteristics Z0. Let the set of alternatives be
fixed at Y0 = {0, . . . , ȳ} for some ȳ ∈ N. Let the sequence of cost functions cn be
arbitrary (i.e., the cost function can change arbitrarily with n). Let the sequence of
cost share functions cni , for each i = 1, . . . , n, be arbitrary (i.e., how the cost shares
are computed from observable characteristics can change arbitrarily with n). Finally,
let the welfare weight function λn

i : Zi → R+ be the same for each individual i and
depend only on i’s observable characteristics zi. Let EN

F denote the set of all such
sequences of finite public good environments.35

34To see that EF ⊂ EC , note that every finite environment can be equivalently represented by a
continuous environment in which we restrict attention to decision rules α with range Y = {0, 1, . . . , ȳ}
and vi, c, and ci for all i are piecewise linear on {[0, 1), [1, 2), . . . , [ȳ − 1, ȳ), [ȳ,∞)} and constant on
[ȳ,∞).

35Formally, for each n ∈ N, let In = {1, . . . , n}, Y n = Y0, Θ
n = (Θ0)

n, Zn = (Z0)
n, vni (y, θ

n
i ) =

θni (y), c
n : Y0 → R+ be any non-decreasing function, {cni }i∈I be any set of functions cni : Y0 ×Zn →

R+ such that each cni (y, z
n) is non-decreasing in y and

∑n
i=1 c

n
i (y, z

n) = cn(y), and {λn
i }i∈I be any

set of identical functions λn
i : Zi → R+.
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In order make probabilistic statements about mechanisms in these environments, we
will define a population distribution over types and observable characteristics jointly
from which individuals are drawn. Let (Ω,A,P) be a probability space and (θi, zi) be
a sequence of i.i.d. random vectors defined on it, where θi : Ω → Θ0 is individual i’s
type and zi : Ω → Z0 is individual i’s observable characteristics.

Let θn = (θi)
n
i=1 denote the sequence of types up to n and zn = (zi)

n
i=1 the sequence

of observable characteristics up to n. The realization of zn determines the welfare
weights λn

i (z
n
i ) and the cost shares cni (·, zn) for each individual i. Given a sequence of

mechanisms (αn, τn), the realization of θn and zn together determine the public good
provision level αn(θn, zn) and each individual’s transfer τni (θ

n, zn).

We are now ready to define asymptotic ex-post budget-balance.

Definition 16. Consider any sequence of i.i.d. random vectors (θi, zi) defined on
(Ω,A,P) such that E((θi(y1) − θi(y0))

2) < ∞ for all y0, y1 ∈ Y , and consider any
induced sequence of finite environments En

F ∈ EN
F . A sequence of mechanisms (αn, τn)

is asymptotically ex-post budget-balanced (AEPBB) if

1. the probability of ex-post budget-balance goes to one as n goes to infinity, i.e.,

P
( n∑

i=1

τni (θ
n, zn) = cn(αn(θn, zn))

)
→ 1 as n → ∞, and

2. the expected distance from ex-post budget-balance per capita goes to zero as n
goes to infinity, i.e.,

1

n
E
(∣∣∣ n∑

i=1

τni (θ
n, zn)− cn(αn(θn, zn))

∣∣∣) → 0 as n → ∞.

A mechanism is asymptotically ex-post budget-balanced if the probability of ex-post
budget-balance goes to one and the expected distance from ex-post budget-balance
per capita goes to zero as the population size goes to infinity. Assume that each
individual’s welfare weight is bounded away from zero and infinite.

Assumption 2. For all i and n, λn
i ∈ [λL, λH ], where 0 < λL ≤ λH < ∞.

The following two propositions are the driving force behind Theorem 4, which shows
that the cost-sharing pivotal mechanism is asymptotically ex-post budget-balanced.
They are also useful results in their own right. The first says that the total CSP
payment is bounded below by zero and above by λH

λL
c(α(θ)) + c(ȳ), and hence that

the distance from ex-post budget balance in a CSP is bounded above by λH

λL
c(ȳ).36

36To see this, note that λH

λL
c(α(θ)) + c(ȳ)− c(α(θ)) = λH−λL

λL
c(α(θ)) + c(ȳ) ≤ λH−λL

λL
c(ȳ) + c(ȳ) =

λH

λL
c(ȳ).
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The second says that the probability that any individual is pivotal goes to zero as n
goes to infinity.

Proposition 3. Consider any finite environment EF ∈ EF and suppose Assump-
tion 2. For any θ ∈ Θ, the total generalized pivotal payment can be no less than zero
and no more than λH

λL
c(α(θ)), and the total CSP payment can be no less than zero and

no more than λH

λL
c(α(θ)) + c(ȳ). That is,

1. 0 ≤
∑n

i=1 ti(θ) ≤
λH

λL
c(α(θ)) and

2. 0 ≤
∑n

i=1 τi(θ) ≤
λH

λL
c(α(θ)) + c(ȳ),

where ti(θ) is i’s transfer in a generalized pivotal mechanism and τi(θ) = ti(θ) +
ci(α(0, θ−i)) is i’s transfer in a CSP mechanism. If the decision rule is monotone,
the upper bound on the total CSP payment can be lowered to λH+λL

λL
c(α(θ)).

Proof Sketch. With only two alternatives {0, 1}, the maximum revenue in a generalized
pivotal mechanism occurs when every individual is exactly pivotal, the entire cost share
is borne by the individual with the highest welfare weight (the poorest individual), and
the entire value is provided by the individual with the lowest welfare weight (the richest
individual). This results in a revenue equal to the cost of the good (over no good) multiplied
by λH

λL
.

Now, consider running a sequence of binary generalized pivotal mechanisms on {0, . . . , ȳ},
where the selected alternative from {0, 1} is run against 2, the selected alternative from
that mechanism is run against 3, and so on.37 Lemma 1 shows that the transfer in such a
sequence of binary generalized pivotal mechanisms is always larger than the transfer in a
single generalized pivotal mechanism on {0, . . . , ȳ}.38

Hence, the total revenue in a generalized pivotal mechanism on {0, . . . , ȳ} is less than the
revenue from a sequence of binary generalized pivotal mechanisms, each of which has a
maximum revenue equal to the difference in cost between the two alternatives considered
multiplied by λH

λL
, so the generalized pivotal mechanism raises no more than λH

λL
c(α(θ)) in

revenue. In a CSP, the total fair-share payment
∑n

i=1 ci(α(0, θ−i)) can be no more than
c(ȳ), and with a monotone decision rule, it can be no more than c(α(θ)). ■

Proposition 4. Consider any sequence of i.i.d. random vectors (θi, zi) defined on
(Ω,A,P) such that E((θi(y1) − θi(y0))

2) < ∞ for all y0, y1 ∈ Y , and consider any
induced sequence of finite environments En

F ∈ EN
F satisfying Assumption 2. The prob-

ability that there is at least one pivotal player in En
F goes to zero as n goes to infinity.

37Viewed as a static mechanism, this mechanism is utilitarian and can be made to have the same
decision rule as any generalized pivotal mechanism on {0, . . . , ȳ}, though it is not strategy-proof.

38Roughly, you have more opportunities to accumulate generalized pivotal payments in a sequence
of binary generalized pivotal mechanisms than in a single overall generalized pivotal mechanism.
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Comments on Proof. We first show that the probability that any individual is pivotal goes
to zero in a binary public good environment. This involves showing that the probability
that the maximum value θ∗n in a sequence {θi}ni=1 of non-negative i.i.d. random variables is
greater than the distance between

∑n
i=1 θi and any sequence of non-negative real numbers

cn goes to zero. From here, we can extend the result to finite public good environments
by noting that if an individual is pivotal in a finite public good environment, then there
exists a binary public good environment in which they are also pivotal. Since there are
finitely many (ȳ(ȳ + 1)/2) pairings of alternatives in a finite public good environment, the
probability that any individual is pivotal in any of them goes to zero. ■

We may now show that the cost-sharing pivotal mechanism is asymptotically ex-post
budget-balanced, and hence by the approximate budget-balance principle, that the
cost-sharing pivotal mechanism is feasible in large populations.

Theorem 4. Consider any sequence of i.i.d. random vectors (θi, zi) defined on (Ω,A,P)
such that E((θi(y1) − θi(y0))

2) < ∞ for all y0, y1 ∈ Y , and consider any induced se-
quence of finite environments En

F ∈ EN
F satisfying Assumption 2. Any sequence of

cost-sharing pivotal mechanisms (αn, τn) is asymptotically ex-post budget-balanced.

Proof Sketch. Condition 1 of AEPBB follows by Proposition 4. To show Condition 2,
consider a binary public good environment for simplicity (the full proof considers any finite
public good environment). The distance from EPBB per capita in a CSP is bounded by
λH
λL

· cn(1)
n (Proposition 3). First, suppose cn(1)

n ↛ ∞ as n → ∞. The CSP is EPBB if
no individual is pivotal. The probability that any individual is pivotal goes to zero as n
goes to infinity (Proposition 4). Hence, the distance from EPBB per capita is bounded by

a constant and the probability of not EPBB goes to zero. Next, suppose cn(1)
n → ∞ as

n → ∞. The CSP is EPBB if no good is produced. The probability that the utilitarian
decision is to produce the good goes to zero faster than cn(1)

n goes to infinity by Chebyshev’s
inequality. ■

By itself, asymptotic ex-post budget-balance does not imply that there is not another
satisfactory mechanism f ∗ that gets closer to budget-balance than the cost-sharing
pivotal mechanism for each n (even if they perform similarly in the limit). Proposi-
tion 5 shows that this is, in fact, the case—i.e., that no other mechanism satisfying
the desired criteria consistently comes closer to budget-balance than the cost-sharing
pivotal mechanism.39

Proposition 5. Consider any continuous environment EC ∈ EC. Suppose that for
any i and θ−i, maxA∗(0, θ−i) exists and there exists θi ∈ Θi such that

v′i(y, θi) =

{
ν ′
i(y) if y ≤ maxA∗(0, θ−i)
0 if y > maxA∗(0, θ−i)

, (1)

39Note that this result holds for any continuous public good environment, for which any finite
public good environment is a special case.
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where ν ′
i(y) ≥ maxj ̸=i v

′
j(y, θj) and ν ′

i(y) > 0 for all y.40 For any utilitarian and
monotone decision rule α, there is no strategy-proof and cost-sharing universal partic-
ipation mechanism that is no farther from ex-post budget-balance than a cost-sharing
pivotal mechanism for every θ. The same holds replacing cost-sharing universal par-
ticipation with the fair pricing principle per unit. Under Assumption 1, the same
holds replacing the fair pricing principle per unit with the fair pricing principle.

Proof Sketch. For any θ−i, if θi satisfies (1) then every agent’s pivotal payment is zero, so
the CSP is either exactly budget-balanced or runs a deficit at θ.41 By Proposition 1, a
mechanism f is strategy-proof and utilitarian if and only if i’s transfer can be expressed as
the sum of her generalized pivotal payment and a term that depends only on her opponents’
reports hi(θ−i). If hi(θ−i) < ci(α(0, θ−i)) the mechanism runs a strictly larger budget-deficit
at θ than a CSP, and if hi(θ−i) > ci(α(0, θ−i)) the mechanism violates cost-sharing universal
participation by Theorem 2 and the fair pricing principle by Theorem 3. ■

8 Uniqueness

We have shown that the cost-sharing pivotal mechanism satisfies strategy-proofness,
utilitarianism, cost-sharing universal participation (Theorem 2), the fair pricing prin-
ciple (Theorem 3), and asymptotic ex-post budget-balance (Theorem 4). Because
the last property only constrains a mechanism’s limiting behavior, there will be many
other mechanisms which also satisfy these five criteria. In particular, we can construct
mechanisms that deviate from the cost-sharing pivotal mechanism by increasingly
small amounts, e.g., by providing rebates that vanish in magnitude or probability
with n, that satisfy all five.

For example, consider a mechanism which is equivalent to a cost-sharing pivotal
mechanism, except that it provides a $1 rebate to any individual i if all of i’s opponents
report a particular type θ̄0. This rebate depends only on the reports of i’s opponents,
so the mechanism is strategy-proof. This transfer is always less than that of the cost-
sharing pivotal mechanism, so it satisfies cost-sharing universal participation and the
fair pricing principle. The probability that any i receives a rebate goes to zero as n
goes to infinity, as does the expected distance from ex-post budget-balance per capita,
so it is asymptotically ex-post budget-balanced.42

40This is a weak richness condition on the domain of values which says that each individual may
value marginal units of the public good as much as any other individual and that this marginal value
may drop to zero at any point—namely, at maxA∗(0, θ−i).

41If the utilitarian decision is unique for each θ, this simplifies to the following. For any θ−i, if θi
satisfies (1) then no agent is pivotal, so the CSP is EPBB at θ.

42To see this, let p = P(θi = θ̄0) < 1. Then, P(EPBB) ≤ P(EPBB in the CSP) + P(∃i ∈ I, ∀j ̸=
i, θj = θ̄0) which goes to zero since P(∃i ∈ I, ∀j ̸= i, θj = θ̄0) ≤

∑n
i=1 P(∀j ̸= i, θj = θ̄0) =

npn−1 → 0 as n goes to infinity. Moreover, conditional on at least one pivotal player, the total rebate
is no larger than n. Hence, 1

nE(distance from EPBB) ≤ 1
nE(distance from EPBB in the CSP) +

1
nn

2pn−1 → 0 as n goes to infinity.
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Theorem 5 shows that these are the only kinds of mechanisms which satisfy these
five criteria—i.e., that all such mechanisms are simply perturbations of the cost-
sharing pivotal mechanism whose deviations disappear in the limit. In particular,
given any sequence of utilitarian and monotone decision rules, any asymptotically
ex-post budget-balanced sequence of mechanisms satisfying strategy-proofness and
at least one of cost-sharing universal participation and the fair pricing principle must
have a transfer rule equal to that of the cost-sharing pivotal mechanism plus a term
hn
i which is 1) non-negative, 2) zero with probability one in the limit, and 3) zero in

expectation, averaged across individuals, in the limit. In this sense, the cost-sharing
pivotal mechanism is the unique solution to the government’s public good provision
problem.

Theorem 5. Consider any sequence of i.i.d. random vectors (θi, zi) defined on (Ω,A,P)
such that E((θi(y1) − θi(y0))

2) < ∞ for all y0, y1 ∈ Y , and consider any induced se-
quence of finite environments En

F ∈ EN
F satisfying Assumption 2. Let αn be a sequence

of utilitarian and monotone decision rules and τn be a sequence of CSP transfer
rules. A sequence of utilitarian and monotone mechanisms (αn, τ̂n) satisfies asymp-
totic ex-post budget-balance, strategy-proofness for each n, and cost-sharing universal
participation for each n if and only if, for all i,

τ̂ni (θ
n, zn) = τni (θ

n, zn) + hn
i (θ

n
−i, z

n),

for some sequence of functions hn
i : Θn−1

0 × Zn
0 → R such that

1. hn
i (θ

n
−i, z

n) ≤ 0 for all θn−i ∈ Θn−1
0 , zn ∈ Zn

0 , i, and n,

2. limn→∞ P(hn
i (θ

n
−i, z

n) = 0 for all i) = 1, and

3. limn→∞
1
n

∑n
i=1 E(hn

i (θ
n
−i, z

n)) = 0.

The same holds replacing cost-sharing universal participation with the fair pricing
principle per unit. Under Assumption 1, the same holds replacing the fair pricing
principle per unit with the fair pricing principle.

Proof Sketch. 1. Follows from Proposition 1, Theorem 2, and Theorem 3.

2. The probability that no agent is pivotal goes to one (Proposition 4), and the CSP is
EPBB when no agent is pivotal. Hence, by (1), P(EPBB) → 1 ⇐⇒ P(

∑n
i=1 h

n
i (θ

n
−i, z

n) =
0 | no one pivotal) → 1 ⇐⇒ P(hni (θn−i, z

n) = 0 for all i | no one pivotal) → 1 ⇐⇒
P(hni (θn−i, z

n) = 0 for all i) → 1.

3. Follows from Theorem 4.

■
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9 The Net-Value Approach and the Clarke Mech-

anism

In this section, I discuss a common methodological simplification used in mechanism
design, where values are taken to be net of cost shares, and argue that it is not without
loss. I call this the net value approach. I then discuss the canonical mechanism in
public good provision, the Clarke mechanism, and contrast it with the cost-sharing
pivotal mechanism.

The rest of the section is organized as follows. First, I provide an overview of the net
value approach and discuss why it is not without loss. Second, I discuss the partic-
ipation constraint that arises when plugging net values into universal participation
(net-value universal participation). Third, I discuss the mechanism that arises when
plugging net values into the pivotal mechanism (the Clarke mechanism). Because the
pivotal and Clarke mechanisms are defined with an efficient decision rule, the analysis
in this section assumes all welfare weights are equal to one.

9.1 Overview of the Net Value Approach

The standard approach in the literature to modeling production costs is to embed
them into the individuals’ values and proceed with the analysis as if there were
no production costs to begin with. Instead of using an individual i’s value vi for
some alternative y—say, a park—we use instead an individual i’s net value ṽi for
the construction of the park and paying a tax equal to her fair share of its cost
ci(y). In particular, if i has type θi, her net value for y, including a tax of ci(y), is
ṽi(y, θi) = vi(y, θi) − ci(y), and her net transfer, the additional payment beyond the
tax ci(α(θ)), is τ̃i(θ) = τi(θ)− ci(α(θ)).

Mechanically, this means that when facing an environment with production costs,
we may simply specify the taxes for each alternative, ask individuals to report their
values net of this tax, and utilize these values as if they were the individuals’ actual
values and there were no production costs. I call this the net value approach.

Indeed, the prevailing view in the literature is that it is without loss of generality to
study environments without production costs, since production costs can always be
baked into the values in this way.43 Green and Laffont (1979, p. 31) even contend
that “there is no real alternative to this approach.” This paper shows otherwise.
Keeping values and costs separate provides a richer mathematical framework which
allows for a wider class of desiderata, mechanisms, and proof techniques than can be
constructed when combining values and costs together.

43See Green and Laffont (1979, p. 29), Moulin (1988, p. 205), Varian (1992, p. 426), and Mas-
Colell, Whinston and Green (1995, p. 877).
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For example, cost-sharing universal participation, the fair pricing principle, and the
cost-sharing pivotal mechanism are all naturally defined in terms of individuals’ cost
shares. Additionally, Theorem 4 cannot be proved using the net value approach. To
see this, consider a binary public good environment in which a public good can either
be produced or not. We would like to fix a population distribution of values for the
public good and consider sequences of i.i.d. random draws from this distribution. Un-
der the net value approach, we would embed cost shares into values and hence assume
that these net values are drawn i.i.d. from some distribution. But, while individuals’
values are i.i.d., individuals’ net values depend on their cost share, which depends
on the total cost of the public good and the observable characteristics of the others,
and hence are in general not i.i.d. Indeed, assuming net values are i.i.d. requires the
underlying assumptions that 1) cost shares are split equally across individuals and 2)
costs increase linearly with population size, which, as discussed in Section 7.2, I do
not assume.

Another challenge when using the net value approach is the reinterpretation of prop-
erties with and without net values. Using the net value approach, a researcher studies
properties and mechanisms without production costs and presumes the results gen-
eralize to the case with production costs. However, it is not always clear what some
desiderata mean when interpreted with net values rather than with intrinsic values.
An important case of this is universal participation, as I discuss in the following
section.

9.2 Net-Value Universal Participation

The pivotal mechanism satisfies strategy-proofness, efficiency, and universal partici-
pation, which is a desirable set of criteria for public good provision with no produc-
tion costs. What does this imply for the pivotal mechanism with net values—i.e.,
the Clarke mechanism? Strategy-proofness with net values is equivalent to strategy-
proofness without net values, and efficiency with net values is equivalent to efficiency
without net values.44 However, universal participation with net values is not equiva-
lent to universal participation without net values.

As we will see, this is because the “zero” value changes meaning when we replace
values with net values. Recall that 0 ∈ Θi is a type for which vi(y, 0) = 0 for all
y—i.e., i’s value for each alternative is zero. Define 0̃ ∈ Θi to be a type for which
ṽi(y, 0̃) = 0 for all y—i.e., i’s net value for each alternative is zero. Given type 0̃,
i’s value for y is then vi(y, 0̃) = ṽi(y, 0̃) + ci(y) = ci(y). In other words, if i has a
net value for y of zero, she in fact has a positive value for y itself—a value exactly
equal to her fair share of its cost. Henceforth, assume 0̃ is an admissible type for each
i.

44To see this, note that ṽi(α(θ), θi)−τ̃i(θ) ≥ ṽi(α(θ
′
i, θ−i), θi)−τ̃i(θ

′
i, θ−i) if and only if vi(α(θ), θi)−

τi(θ) ≥ vi(α(θ
′
i, θ−i), θi)− τi(θ

′
i, θ−i) and argmaxy

∑
i∈I ṽi(y, θi) = argmaxy

∑
i∈I vi(y, θi)− ci(y).
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Because universal participation is a desirable constraint in public good provision en-
vironments without production costs, it is often simply presumed that a mechanism
which satisfies universal participation will continue to be desirable when adding pro-
duction costs via the net value approach. Indeed, to my knowledge, no one has taken
the step of explicitly spelling out what universal participation states when net val-
ues are employed. Since doing so produces a distinct constraint, I give it its own
name—net-value universal participation. It states the following.

Definition 17. A mechanism f = (α, τ) satisfies net-value universal participation if
for all θ and i,

vi(α(θ), θi))− τi(θ)) ≥ vi(α(0̃, θ−i), θi)− ci(α(0̃, θ−i)),

or equivalently, ṽi(α(θ), θi)− τ̃i(θ) ≥ ṽi(α(0̃, θ−i), θi).

The second line makes clear that net-value universal participation is simply universal
participation with net values.45 The first line expresses this condition in terms of
actual values vi and transfers τi, making clear what it states about the underlying
fundamentals: each individual should always prefer to participate in the mechanism
rather than to not participate, receive the alternative chosen had she valued each
alternative at precisely her fair share of its cost, and be taxed her fair share of the
cost of that alternative. In my opinion, this is an unnatural desiderata for these
environments.

The difference between cost-sharing universal participation and net-value universal
participation is what the mechanism purports to do when an individual does not
participate. In the former, the mechanism selects the optimal decision supposing
the individual had a value of zero for each good and charges them their fair share
of its cost. In the latter, the mechanism selects the optimal decision supposing the
individual had a value exactly equal to their fair share of the cost of each good,
and charges them their fair share of the cost of that good. Notice that cost-sharing
universal participation retains the idea from universal participation that the decision
made if an individual does not participate is equivalent to the decision made had they
never existed. Net-value universal participation does not.

Finally, each condition can be seen as an alternative way to generalize universal
participation to environments with production costs. Cost-sharing universal partici-
pation adds to universal participation that, in addition to receiving what is produced
without her, an individual is also taxed her fair share of its cost. Net-value universal
participation simply reinterprets universal participation with net values.

45Expressed in terms of net values, cost-sharing universal participation states that ṽi(α(θ), θi) −
τ̃i(θ) ≥ ṽi(α(0, θ−i), θi) for all θ and i.
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9.3 The Clarke Mechanism

As noted in the preceding section, cost-sharing universal participation and net-value
universal participation can be seen as alternative ways to generalize universal par-
ticipation to environments with production costs. Exactly the same is true for the
cost-sharing pivotal mechanism and the Clarke mechanism. Each mechanism can be
seen as an alternative way to generalize the pivotal mechanism to environments with
production costs. The cost-sharing pivotal mechanism appends to the transfers in the
pivotal mechanism that, in addition to paying the externality she imposes on society,
an individual is also taxed her fair share of the cost of what would have been produced
without her. The Clarke mechanism simply reinterprets the pivotal mechanism with
net values.46

Definition 18. A mechanism f = (α, τ) is a Clarke mechanism if the decision rule
is efficient and the transfer rule satisfies, for all i and θ,

τi(θ) =
(∑

j ̸=i

vj(α(0̃, θ−i), θj)−
∑
j ̸=i

cj(α(0̃, θ−i))
)

−
(∑

j ̸=i

vj(α(θ), θj)−
∑
j ̸=i

cj(α(θ))
)
+ ci(α(θ)),

or equivalently, if the net transfer rule satisfies, for all i and θ,

τ̃i(θ) =
∑
j ̸=i

ṽj(α(0̃, θ−i), θj)−
∑
j ̸=i

ṽj(α(θ), θj).

The second line makes clear that the Clarke mechanism is simply a pivotal mechanism
with net values and no production costs. The first line expresses actual transfers
τi in terms of actual values vi, making clear what the mechanism states about the
underlying fundamentals: each individual pays the loss imposed on society—excluding
her own benefits from the public good and supposing each good were cheaper by
precisely her fair share of its cost—when taking both her preferences and her share
of the cost into account for the decision, plus her fair share of the cost of what
is produced. Compare this to the cost-sharing pivotal mechanism, in which each
individual pays the loss imposed on society—excluding her own benefits from the
public good—when taking her preferences into account for the decision, plus her fair
share of the cost of what would have been produced without her.

The definition of a Clarke mechanism in terms of the underlying fundamentals is
clunky. In a pivotal mechanism, each individual pays the loss she imposes on society

46The terms pivotal and Clarke mechanism are often used interchangeably in the literature (see,
e.g., Mas-Colell, Whinston and Green (1995, p. 878). See Appendix B for a disambiguation of these
two mechanisms.

38



when taking her preferences into account for the decision, excluding her own benefits
from the public good. This is simple and intuitive. But plugging net values into
the pivotal mechanism and being explicit about the result is much less so. As with
net-value universal participation, to my knowledge, this is the first time the Clarke
mechanism has been expressed in this way.

We know from Theorem 2 that the pivotal mechanism can be characterized as the
mechanism which maximizes ex-post revenue among all mechanisms satisfying strategy-
proofness, efficiency, and universal participation. Reinterpreting this with net values
immediately implies that the Clarke mechanism can be characterized as the mech-
anism which maximizes ex-post revenue among all mechanisms satisfying strategy-
proofness, efficiency, and net-value universal participation.

Corollary 1. Given any convex environment EX ∈ EX , a mechanism maximizes ex-
post revenue among all mechanisms which satisfy strategy-proofness, efficiency, and
net-value universal participation if and only if it is a Clarke mechanism.

Figure 3 depicts the cost-sharing pivotal mechanism and the Clarke mechanism graph-
ically for the case of a continuous public good y. v′ =

∑
k v

′
k(y, θk) is the marginal

social benefit of the public good. v′−i =
∑

j ̸=i v
′
j(y, θj) is the marginal social benefit of

the public good excluding i. c′ is the marginal social cost of the public good. c′i is i’s
marginal fair cost share. c′−i = c′(y) − c′i(y) is the marginal social cost of the public
good minus i’s marginal fair cost share. α(θ) is the efficient decision (where v′ and c′

cross). α(0, θ−i) is the efficient decision without i (where v′−i and c′ cross). α̃(θ−i) is
the efficient decision ignoring i’s preferences and i’s share of the cost (where v′−i and
c′−i cross).

47

The Clarke mechanism implements α(θ) and charges i the loss imposed on society—
excluding her own benefits from the public good and supposing each good were
cheaper by precisely her fair share of its cost—when taking both her preferences
and her share of the cost into account for the decision (the area in red on the bottom
panels), plus her fair share of the cost of what is produced (the area in green on the
bottom panels). The cost-sharing pivotal mechanism implements α(θ) and charges i
the loss imposed on society—excluding her own benefits from the public good—when
taking her preferences into account for the decision (the area in red on the top pan-
els), plus her fair share of the cost of what would have been produced without her
(the area in green on the top panels).

Notice that, as the right panels of Figure 3 show, the Clarke mechanism incorporates
a somewhat unusual notion of what it means for an individual to be pivotal. Suppose
i has zero value for the public good. She is not pivotal, as the efficient decision is the
same with or without her. The pivotal mechanism charges i zero, and the cost-sharing

47Formally, α̃(θ−i) ∈ argmaxy∈Y

∑
j ̸=i vj(y, θj) − cj(y) and α(θ) ∈ argmaxy∈Y

∑
i∈I vi(y, θi) −

ci(y). Note that while α̃(θ−i) > α(θ) in Figure 3, it may also be that α̃(θ−i) ≤ α(θ).
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Figure 3

pivotal mechanism charges i her fair share of the cost of what is produced (the green
triangle in the top right panel). The Clarke mechanism, on the other hand, charges i
her fair share of the cost of what is produced plus a modified conception of a “pivotal”
payment (the red triangle in the bottom right panel). Ignoring i’s preference does
not change the optimal decision (α(0, θ−i) = α(θ)), but ignoring i’s share of the cost
makes the good cheaper, and if the good is cheaper, the others want to produce more
of it (α̃(θ−i) > α(θ)). The red triangle captures this “loss” to society—the welfare
loss of not getting to produce more of the good if it were cheaper by precisely i’s cost
share. In the Clarke mechanism, an individual is “pivotal” if the efficient decision
changes when excluding her preferences and her fair share of the cost.

This distinctive feature of the Clarke mechanism ultimately leads it to violate de-
sirable participation constraints and fairness principles. In particular, the Clarke
mechanism violates cost-sharing universal participation, the fair pricing principle,
and no-extortion. Violations of all three can be seen in Example 1. Violations of the
first two can also be seen in the bottom right panel of Figure 3, where i has a zero
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value for the good but is asked to pay more than her fair share for what is produced.
By contrast, the cost-sharing pivotal mechanism satisfies all three.

Although cost-sharing universal participation neither implies nor is implied by net-
value universal participation, it turns out that the Clarke mechanism always raises
more revenue than the cost-sharing pivotal mechanism.

Fact 2. Given any convex environment EX ∈ EX with all welfare weights equal to
one, the transfer for each individual i in a Clarke mechanism is no less than that in
a cost-sharing pivotal mechanism.

Proof. τClarke
i (θ) ≥ τCSP

i (θ) if and only if∑
j ̸=i

vj(α(0̃, θ−i), θj)− cj(α(0̃, θ−i)) = max
y∈Y

∑
j ̸=i

vj(y, θj)− cj(y)

≥
∑
j ̸=i

vj(α(0, θ−i), θj)−
∑
k∈I

ck(α(0, θ−i)) + ci(α(0, θ−i)).

■

In fact, one of the main selling points of the Clarke mechanism in the literature is
that it never runs a budget deficit.

Definition 19. A mechanism f = (α, τ) satisfies no-deficit if
∑

i∈I τi(θ) ≥ c(α(θ))
for all θ.

Nevertheless, as discussed in Section 7.1, the approximate budget-balance principle
argues that what really matters for the government’s public good provision problem
is that future changes to tax policy which balance the budget in the long run do not
distort individual incentives—and what really matters for this is that the expected
distance from budget-balance per capita is small. It is not particularly important that
a mechanism never runs a budget deficit. Arguably, this is even somewhat of a red
herring. In fact, it turns out that never running a budget deficit and fairness are fun-
damentally in conflict with each other. No strategy-proof and utilitarian mechanism
can satisfy both no-deficit and no-extortion, as I show in the next section.

10 Impossibility of No-Deficit and No-Extortion

In this section, I show that no strategy-proof and utilitarian mechanism can sat-
isfy both no-deficit (the mechanism never runs a budget deficit) and no-extortion
(if nothing is produced, no one pays). No-deficit constrains transfers from below,
no-extortion constrains transfers from above, and, alongside strategy-proofness and
utilitarianism, they are incompatible. Let EB ⊂ EF denote the set of binary public
good environments in which a public good can either be produced or not (i.e., the set
of finite public good environments with ȳ = 1).
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Proposition 6. There does not exist any mechanism that satisfies strategy-proofness,
utilitarianism, no-extortion, and no-deficit in all binary public good environments
(and hence, in all finite, continuous, and convex public good environments).

Proof. A potential project-starter is an individual for whom the project may or may not be
produced, depending on her report. In particular, a player i is a potential project-starter
for θ−i if α(0, θ−i) = 0 and there exists θi ∈ Θi such that α(θ) > 0.

We first show that a mechanism satisfying strategy-proofness, utilitarianism, and no-extortion
can charge potential project-starters no more than their generalized pivotal payment. Given
any convex environment EX ∈ EX , a mechanism f is strategy-proof and utilitarian if and
only if it is a generalized Groves mechanism by Proposition 1. Let f = (α, τ) be a general-
ized Groves mechanism with τi(θ) =

1
λi
[
∑

j ̸=i λjvj(α(0, θ−i), θj) −
∑

k∈I λkck(α(0, θ−i))] −
1
λi
[
∑

j ̸=i λjvj(α(θ), θj) −
∑

k∈I λkck(α(θ))] + hi(θ−i) for some hi : Θ−i → R. If i is a po-

tential project-starter for θ−i, then no-extortion requires τi(0, θ−i) =
1
λi
[
∑

j ̸=i λjvj(0, θj)−∑
k∈I λkck(0)]− 1

λi
[
∑

j ̸=i λjvj(0, θj)−
∑

k∈I λkck(0)] + hi(θ−i) = hi(θ−i) ≤ 0.

We now show the result. Consider a binary public good environment with three individuals
each with equal welfare weights and value 3 for the public good which costs 8 to produce.
The utilitarian decision is to produce the public good. Each player is a potential project-
starter, so in order to satisfy no-extortion their transfer must be no larger than their pivotal
payment by the previous argument, which is 2. Hence, total revenue can be no more than
6, violating no-deficit. ■

This result forces us to be careful about what we seek. No-deficit is an intuitive
criterion, but arguably isn’t what really matters for practical large-scale mechanism
design. By the approximate budget-balance principle (small changes to future tax
policy do not affect individual incentives), the appropriate criterion for large-scale
mechanisms is asymptotic ex-post budget-balance. Moreover, while no-extortion can
be satisfied alongside asymptotic ex-post budget-balance, it cannot be satisfied along-
side no-deficit.

11 Conclusion

In this paper, I lay out the government’s public good provision problem from first
principles and identify its solution. The cost-sharing pivotal mechanism (a) provides
incentives for each individual to truthfully report their willingness to pay for the
public good (strategy-proofness), (b) provides incentives for each individual to par-
ticipate in the process (cost-sharing universal participation), (c) produces the welfare-
maximizing quantity of the public good (utilitarianism), (d) raises exactly the amount
of revenue necessary to produce this quantity in large populations (asymptotic ex-post
budget-balance), and (e) does not ask anyone to pay what has been deemed an un-
fair amount (the fair pricing principle). I conclude with a constructive interpretation
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about how to implement this mechanism in practice.

Taken literally, the cost-sharing pivotal mechanism asks each individual to report their
willingness to pay for the public good(s), and then, upon receiving everyone’s reports,
implements the utilitarian decision and requests a payment from each individual.
The generic outcome in the cost-sharing pivotal mechanism is that each individual
is asked to pay precisely her fair share of what is produced, and so, upon hearing
such a decision, each individual would be expected to transfer this amount to the
government.

But instead of thinking of an individual’s fair cost share as a predetermined amount,
agreed upon in advance by a group of democratically elected officials, researchers, and
ordinary citizens (as I proposed in Section 3), we can also think of an individual’s fair
cost share as being whatever the existing tax system would ultimately collect from
her if the government needed to raise additional funds to finance the public good.
That is, what constitutes an individual’s fair cost share is built into the existing tax
system. Indeed, this is how public goods are normally funded.48

Under such an interpretation, the only explicit payments an individual needs to make
or receive are the adjustments to their transfer that occur if and only if they sway
the decision.49 If an individual is pivotal (which occurs almost never), then today she
pays her pivotal payment minus a discount equal to the difference between her fair
share of the cost of what is produced and her fair share of the cost of what would have
been produced without her. If an individual is not pivotal (which occurs generically),
her payment today is zero. In either case, the tax system ultimately collects her fair
share of the cost of what is produced over time.
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A Fair Cost Shares: Some Examples

In this appendix, I present some examples of how a government might construct
fair cost shares from observable traits. A simple notion of fairness is that of equal
cost shares, which says that it is fair for everyone to pay an equal share of the cost:
ci(y, z) = c(y)/n for all y and z. But as discussed in Section 3, fair shares may
depend on anything which is observable to the government, including income level
and distance from the public good.

Suppose income levels wi are observable (i.e., wi is a component of zi). An appealing
notion of fairness might then be that it is fair for everyone to pay an equal share of
their income:

ci(y, z) = c(y)
wi∑
j wj
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for all y and z. In fact, a natural generalization of this idea is that it is fair for
everyone to pay an equal share of their duty :

ci(y, z) = c(y)
δ(zi)∑
j δ(zj)

,

where Zi = Z0 for all i and δ : Z0 → R+ is an index measuring i’s relative duty to pay
for the public good. If distance di from the public good is observable, an appealing
index of duty might be one in which duty is constant within a particular radius r and
is inversely proportional to distance beyond r,

δ(di) =

{
1/r if 0 ≤ di ≤ r
1/di if di > r

.

If both income wi and distance di are observable, an appealing index of duty might
be

δ(wi, di) =

{
wi/r if 0 ≤ di ≤ r
wi/di if di > r

,

so that doubling one’s income doubles one’s duty and doubling one’s distance halves
one’s duty beyond radius r.

Alternatively, what constitutes a fair cost share can simply be derived from the current
tax system. See Section 11 for a discussion.

B Disambiguating the Pivotal and Clarke Mecha-

nisms

The pivotal mechanism is generally defined in a standard mechanism design envi-
ronment (without production costs). In such environments, it is defined as follows.

Definition 20. A mechanism f = (α, τ) is a pivotal mechanism (without production
costs) if α(θ) ∈ argmaxy∈Y

∑
i∈I vi(y, θi) and

τi(θ) =
∑
j ̸=i

vj(α(0, θ−i), θj)−
∑
j ̸=i

vj(α(θ), θj).

In words, the pivotal mechanism employs an efficient decision rule and charges each
individual the loss imposed on society—excluding her own benefits from the public
good—when taking her preferences into account for the decision.

How then does one define the pivotal mechanism in environments with produc-
tion costs? Production costs change the efficient decision rule from maximizing∑

i∈I vi(y, θi) to maximizing
∑

i∈I vi(y, θi) − c(y). In this paper, I define the piv-
otal mechanism identically as before, except with this updated decision rule.
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Definition 21. A mechanism f = (α, τ) is a pivotal mechanism (with production
costs) if α(θ) ∈ argmaxy∈Y

∑
i∈I vi(y, θi)− c(y) and

τi(θ) =
(∑

j ̸=i

vj(α(0, θ−i), θj)− c(α(0, θ−i))
)
−
(∑

j ̸=i

vj(α(θ), θj)− c(α(θ))
)
.

Notice that, with this generalized definition, the natural language description of the
mechanism remains unchanged. The pivotal mechanism employs an efficient decision
rule and charges each individual the loss imposed on society—excluding her own
benefits from the public good—when taking her preferences into account for the
decision.

Still, it is standard to do something different in the literature. To generalize the
pivotal mechanism to environments with production costs, instead of updating the
notion of efficiency and leaving everything else unchanged, it is standard to use the
net value approach, embedding costs into individual values and otherwise ignoring
production costs. This produces the same decision rule as above, but a different
transfer rule. I call this mechanism a Clarke mechanism, though it is common in the
literature to refer to it as a pivotal mechanism as well. That is, it is common in the
literature to consider the pivotal and Clarke mechanisms to be equivalent (see, for
instance, Mas-Colell, Whinston and Green (1995, p. 878)). Plugging net values into
the pivotal mechanism without production costs gives rise to the following, reprinted
from Section 9.3.

Definition 18. A mechanism f = (α, τ) is a Clarke mechanism if the decision rule
is efficient and the transfer rule satisfies, for all i and θ,

τi(θ) =
(∑

j ̸=i

vj(α(0̃, θ−i), θj)−
∑
j ̸=i

cj(α(0̃, θ−i))
)

−
(∑

j ̸=i

vj(α(θ), θj)−
∑
j ̸=i

cj(α(θ))
)
+ ci(α(θ)),

or equivalently, if the net transfer rule satisfies, for all i and θ,

τ̃i(θ) =
∑
j ̸=i

ṽj(α(0̃, θ−i), θj)−
∑
j ̸=i

ṽj(α(θ), θj).

Unlike before, the natural language description of this mechanism is quite different
than that of the original pivotal mechanism. The Clarke mechanism employs an effi-
cient decision rule and charges each individual the loss imposed on society—excluding
her own benefits from the public good and supposing each good were cheaper by pre-
cisely her fair share of its cost—when taking both her preferences and her share
of the cost into account for the decision, plus her fair share of the cost of what is
produced.
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C Proofs Omitted from Main Body

Theorem 3. Consider any continuous environment EC ∈ EC and any utilitarian
and monotone decision rule α. A mechanism f = (α, τ) maximizes ex-post revenue
among all mechanisms which satisfy strategy-proofness, utilitarianism, and the fair
pricing principle per unit if and only if it is a cost-sharing pivotal mechanism. Under
Assumption 1, the same holds replacing the fair pricing principle per unit with the
fair pricing principle.

Proof. Given any continuous environment EC ∈ EC , a mechanism f is strategy-proof and
utilitarian if and only if it is a generalized Groves mechanism by Proposition 1. Let f =
(α, τ) be a generalized Groves mechanism with a monotone decision rule α and τi(θ) =
gi(θ−i)− 1

λi
[
∑

j ̸=i λjvj(α(θ), θj)−
∑

k∈I λkck(α(θ))] for some gi : Θ−i → R.

Part I.We would like to show that gi(θ−i) =
1
λi
[
∑

j ̸=i λjvj(α(0, θ−i), θj)−
∑

k∈I λkck(α(0, θ−i))]+
ci(α(0, θ−i)) maximizes ex post revenue subject to the FPP per unit. The FPP per

unit requires that for all i and θ,
∫ α(θ)
0 max{v′i(y, θi), c′i(y)} dy + 1

λi
[
∑

j ̸=i λjvj(α(θ), θj) −∑
k∈I λkck(α(θ))] ≥ gi(θ−i), so to maximize ex-post revenue subject to the FPP per unit,

set

gi(θ−i) = inf
θi∈Θi

{∫ α(θ)

0
max{v′i(y, θi), c′i(y)}+

1

λi

(∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y)

)
dy

}
.

We would like to show that for any θ, increasing v′i(y, θi) pointwise weakly increases the
objective function, and hence that 0 ∈ Θi is a minimizer. Suppose v′i(y, θ̂i) ≥ v′i(y, θi) for
all y ≥ 0. Since α is monotonic, α(θ̂i, θ−i) ≥ α(θ). We would like to show∫ α(θ̂i,θ−i)

0
max{v′i(y, θ̂i), c′i(y)}+

1

λi

(∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y)

)
dy

≥
∫ α(θ)

0
max{v′i(y, θi), c′i(y)}+

1

λi

(∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y)

)
dy,

or equivalently,∫ α(θ)

0
max

{
v′i(y, θ̂i), c

′
i(y)

}
−max

{
v′i(y, θi), c

′
i(y)

}
dy

+

∫ α(θ̂i,θ−i)

α(θ)
max

{
v′i(y, θ̂i), c

′
i(y)

}
+

1

λi

(∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y)

)
dy ≥ 0.

The first term is non-negative, and by definition of α,∫ α(θ̂i,θ−i)

0
v′i(y, θ̂i) +

1

λi

(∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y)

)
dy

≥
∫ α(θ)

0
v′i(y, θ̂i) +

1

λi

(∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y)

)
dy
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⇐⇒
∫ α(θ̂i,θ−i)

α(θ)
v′i(y, θ̂i) +

1

λi

(∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y)

)
dy ≥ 0

=⇒
∫ α(θ̂i,θ−i)

α(θ)
max

{
v′i(y, θ̂i), c

′
i(y)

}
+

1

λi

(∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y)

)
dy ≥ 0.

Hence, 0 ∈ Θi is a minimizer and for all θ−i,

gi(θ−i) =

∫ α(0,θ−i)

0
max

{
v′i(y, 0), c

′
i(y)

}
+

1

λi

(∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y)

)
dy

=
1

λi

(∑
j ̸=i

λjvj(α(0, θ−i), θj)−
∑
k∈I

λkck(α(0, θ−i))
)
+ ci(α(0, θ−i)).

Part II. Suppose Assumption 1. We would like to show that gi(θ−i) =
1
λi
[
∑

j ̸=i λjvj(α(0, θ−i), θj)−∑
k∈I λkck(α(0, θ−i))] + ci(α(0, θ−i)) maximizes ex-post revenue subject to the FPP. The

FPP requires that for all i and θ, max{vi(α(θ), θi), ci(α(θ))} + 1
λi
[
∑

j ̸=i λjv
′
j(α(θ), θj) −∑

k∈I λkc
′
k(α(θ))] ≥ gi(θ−i), so to maximize ex-post revenue subject to the FPP, set

gi(θ−i) = inf
θi∈Θi

{
max

{∫ α(θ)

0
v′i(y, θi) dy,

∫ α(θ)

0
c′i(y) dy

}
+

1

λi

∫ α(θ)

0

∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y) dy

}
.

We would like to show that for any θ, increasing v′i(y, θi) pointwise weakly increases the
objective function, and hence that 0 ∈ Θi is a minimizer. Suppose v′i(y, θ̂i) ≥ v′i(y, θi) for
all y ≥ 0. Since α is monotonic, α(θ̂i, θ−i) ≥ α(θ). We would like to show

max
{∫ α(θ̂i,θ−i)

0
v′i(y, θ̂i) dy,

∫ α(θ̂i,θ−i)

0
c′i(y) dy

}
+

1

λi

∫ α(θ̂i,θ−i)

0

∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y) dy

≥ max
{∫ α(θ)

0
v′i(y, θi) dy,

∫ α(θ)

0
c′i(y) dy

}
+

1

λi

∫ α(θ)

0

∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y) dy

which is equivalent to

max
{∫ α(θ̂i,θ−i)

0
v′i(y, θ̂i) dy,

∫ α(θ̂i,θ−i)

0
c′i(y) dy

}
−max

{∫ α(θ)

0
v′i(y, θi) dy,

∫ α(θ)

0
c′i(y) dy

}
+

1

λi

∫ α(θ̂i,θ−i)

α(θ)

∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y) dy ≥ 0.

Notice that, since
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i)+

1
λi
[
∑

j ̸=i λjv
′
j(y, θj)−

∑
k∈I λkc

′
k(y)] dy ≥

∫ α(θ)
0 v′i(y, θ̂i)+

1
λi
[
∑

j ̸=i λjv
′
j(y, θj)−

∑
k∈I λkc

′
k(y)] dy,∫ α(θ̂i,θ−i)

α(θ)
v′i(y, θ̂i) +

1

λi

(∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y)

)
dy ≥ 0.
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Hence, it is sufficient to show

max
{∫ α(θ̂i,θ−i)

0
v′i(y, θ̂i) dy,

∫ α(θ̂i,θ−i)

0
c′i(y) dy

}
−max

{∫ α(θ)

0
v′i(y, θi) dy,

∫ α(θ)

0
c′i(y) dy

}
≥

∫ α(θ̂i,θ−i)

α(θ)
v′i(y, θ̂i) dy. (2)

Case 1. Suppose
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i) dy <

∫ α(θ̂i,θ−i)
0 c′i(y) dy and

∫ α(θ)
0 v′i(y, θi) dy <

∫ α(θ)
0 c′i(y) dy.

Then (2) becomes
∫ α(θ̂i,θ−i)
0 c′i(y) dy −

∫ α(θ)
0 c′i(y) dy ≥

∫ α(θ̂i,θ−i)
α(θ) v′i(y, θ̂i) dy, which holds if

and only if
∫ α(θ̂i,θ−i)
α(θ) c′i(y) dy ≥

∫ α(θ̂i,θ−i)
α(θ) v′i(y, θ̂i) dy, which is implied by the first inequality

and Assumption 1.

Case 2. Suppose
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i) dy <

∫ α(θ̂i,θ−i)
0 c′i(y) dy and

∫ α(θ)
0 v′i(y, θi) dy ≥

∫ α(θ)
0 c′i(y) dy.

Then (2) becomes
∫ α(θ̂i,θ−i)
0 c′i(y) dy −

∫ α(θ)
0 v′i(y, θi) dy ≥

∫ α(θ̂i,θ−i)
α(θ) v′i(y, θ̂i) dy which is im-

plied by the first inequality and the definition of θ̂i.

Case 3. Suppose
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i) dy ≥

∫ α(θ̂i,θ−i)
0 c′i(y) dy and

∫ α(θ)
0 v′i(y, θi) dy <

∫ α(θ)
0 c′i(y) dy.

Then (2) becomes
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i) dy−

∫ α(θ)
0 c′i(y) dy ≥

∫ α(θ̂i,θ−i)
α(θ) v′i(y, θ̂i) dy, which holds

if and only if
∫ α(θ)
0 v′i(y, θ̂i) dy ≥

∫ α(θ)
0 c′i(y) dy, which is implied by the first inequality and

Assumption 1.

Case 4. Suppose
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i) dy ≥

∫ α(θ̂i,θ−i)
0 c′i(y) dy and

∫ α(θ)
0 v′i(y, θi) dy ≥

∫ α(θ)
0 c′i(y) dy.

Then (2) becomes
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i) dy −

∫ α(θ)
0 v′i(y, θi) dy ≥

∫ α(θ̂i,θ−i)
α(θ) v′i(y, θ̂i) dy, which

holds by the definition of θ̂i.

Hence, 0 ∈ Θi is a minimizer and for all θ−i,

gi(θ−i) = max
{∫ α(0,θ−i)

0
v′i(y, 0) dy,

∫ α(0,θ−i)

0
c′i(y) dy

}
+

1

λi

∫ α(0,θ−i)

0

∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y) dy

=
1

λi

(∑
j ̸=i

λjvj(α(0, θ−i), θj)−
∑
k∈I

λkck(α(0, θ−i))
)
+ ci(α(0, θ−i)).

■

Proposition 5. Consider any continuous environment EC ∈ EC. Suppose that for
any i and θ−i, maxA∗(0, θ−i) exists and there exists θi ∈ Θi such that

v′i(y, θi) =

{
ν ′
i(y) if y ≤ maxA∗(0, θ−i)
0 if y > maxA∗(0, θ−i)

, (1)

where ν ′
i(y) ≥ maxj ̸=i v

′
j(y, θj) and ν ′

i(y) > 0 for all y.50 For any utilitarian and

50This is a weak richness condition on the domain of values which says that each individual may
value marginal units of the public good as much as any other individual and that this marginal value
may drop to zero at any point—namely, at maxA∗(0, θ−i).
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monotone decision rule α, there is no strategy-proof and cost-sharing universal partic-
ipation mechanism that is no farther from ex-post budget-balance than a cost-sharing
pivotal mechanism for every θ. The same holds replacing cost-sharing universal par-
ticipation with the fair pricing principle per unit. Under Assumption 1, the same
holds replacing the fair pricing principle per unit with the fair pricing principle.

Proof. Let

ti(θ) =
1

λi

(∑
j ̸=i

λjvj(α(0, θ−i), θj)−
∑
k∈I

λkck(α(0, θ−i))
)
− 1

λi

(∑
j ̸=i

λjvj(α(θ), θj)−
∑
k∈I

λkck(α(θ))
)

=
1

λi

∫ α(0,θ−i)

0

∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y) dy −

1

λi

∫ α(θ)

0

∑
j ̸=i

λjv
′
j(y, θj)−

∑
k∈I

λkc
′
k(y) dy

be i’s generalized pivotal payment and τi(θ) = ti(θ) + ci(α(0, θ−i)) be i’s CSP transfer.

Part I. First, we would like to show that for any θ−i, there exists θi such that a CSP
mechanism does not run a strict budget surplus—i.e.,

∑
k∈I τk(θ) ≤ c(α(θ)).

For any θ, y∗ ∈ A∗(θ) if and only if for any y′ ≤ y∗ ≤ y′′,∫ y∗

y′

∑
k∈I

λkv
′
k(y, θk)− λkc

′
k(y) dy ≥ 0 ≥

∫ y′′

y∗

∑
k∈I

λkv
′
k(y, θk)− λkc

′
k(y) dy.

That is, y∗ is utilitarian if and only if moving from any y′ ≤ y∗ to y∗ weakly increases total
welfare and moving from y∗ to any y′′ ≥ y∗ weakly decreases total welfare.

Fix any θ−i. Let θi satisfy (1). Then for any y′ < maxA∗(0, θ−i) < y′′,∫ maxA∗(0,θ−i)

y′

∑
l ̸=i

λlv
′
l(y, θl)−

∑
k∈I

λkc
′
k(y) dy ≥ 0 >

∫ y′′

maxA∗(0,θ−i)

∑
l ̸=i

λlv
′
l(y, θl)−

∑
k∈I

λkc
′
k(y) dy,

(3)
where the strict inequality follows since we are considering maxA∗(0, θ−i).

By (3), for any y′ < maxA∗(0, θ−i) < y′′,∫ maxA∗(0,θ−i)

y′

∑
k∈I

λkv
′
k(y, θk)− λkc

′
k(y) dy > 0 >

∫ y′′

maxA∗(0,θ−i)

∑
k∈I

λkv
′
k(y, θk)− λkc

′
k(y) dy,

where the first strict inequality follows since νi(y) > 0 for all y ≤ A∗(0, θ−i). Hence,
α(θ) = maxA∗(0, θ−i). Since α(0, θ−i), α(θ) ∈ A∗(0, θ−i),∫ α(0,θ−i)

0

∑
l ̸=i

λlv
′
l(y, θl)−

∑
k∈I

λkc
′
k(y) dy =

∫ α(θ)

0

∑
l ̸=i

λlv
′
l(y, θl)−

∑
k∈I

λkc
′
k(y) dy,

so i’s generalized pivotal payment is zero and τi(θ) = ci(α(0, θ−i)) ≤ ci(α(θ)) by mono-
tonicity.
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For any j ̸= i, by (3), for any y′ < maxA∗(0, θ−i) < y′′,∫ maxA∗(0,θ−i)

y′

∑
l ̸=j

λlv
′
l(y, θl)−

∑
k∈I

λkc
′
k(y) dy ≥ 0 >

∫ y′′

maxA∗(0,θ−i)

∑
l ̸=j

λlv
′
l(y, θl)−

∑
k∈I

λkc
′
k(y) dy

by definition of v′i(y, θi). Hence, maxA∗(0, θ−i) ∈ A∗(0, θ−j). Since α(0, θ−j), α(θ) ∈
A∗(0, θ−j),∫ α(0,θ−j)

0

∑
l ̸=j

λlv
′
l(y, θl)−

∑
k∈I

λkc
′
k(y) dy =

∫ α(θ)

0

∑
l ̸=j

λlv
′
l(y, θl)−

∑
k∈I

λkc
′
k(y) dy,

so j’s generalized pivotal payment is zero and τj(θ) = cj(α(0, θ−j)) ≤ cj(α(θ)) by mono-
tonicity.

Hence,
∑

k∈I τk(θ) ≤ c(α(θ)) as desired.

Part II. Given any continuous environment EC ∈ EC , a mechanism f is strategy-proof and
utilitarian if and only if it is a generalized Groves mechanism by Proposition 1. We may
write i’s generalized Groves transfer as the sum of her generalized pivotal payment and a
term that depends only on her opponents’ reports, ti(θ) + hi(θ−i) for some hi : Θ−i → R.
For any i and θ−i, if θi satisfies (1), then setting hi(θ−i) < ci(α(0, θ−i)) runs a strictly
larger budget-deficit than a CSP by Part I, and setting hi(θ−i) > ci(α(0, θ−i)) violates CS-
UP by Theorem 2 and violates the FPP per unit (and the FPP under Assumption 1) by
Theorem 3. ■

We now proceed to prove Proposition 3, Proposition 4, and Theorem 4.

Consider any finite environment EF ∈ EF and any utilitarian decision rule α : Θ →
Y . For any Ŷ ⊆ Y = {0, 1, . . . , ȳ}, let A∗(θ; Ŷ ) = argmax y∈Ŷ

∑
i∈I λivi(y, θi) −

λici(y),

α̂(θ; Ŷ ) =

{
α(θ) if α(θ) ∈ Ŷ

maxA∗(θ; Ŷ ) otherwise
,

and

ti(θ; Ŷ ) =
1

λi

(∑
j ̸=i

λjvj(α̂(0, θ−i; Ŷ ), θj)−
∑
k∈I

λkck(α̂(0, θ−i; Ŷ ))
)

− 1

λi

(∑
j ̸=i

λjvj(α̂(θ; Ŷ ), θj)−
∑
k∈I

λkck(α̂(θ; Ŷ ))
)
.

A∗(θ; Ŷ ) is the set of utilitarian alternatives within Ŷ . α̂(θ; Ŷ ) is the decision rule that
selects according to α when α(θ) is in Ŷ and selects the largest utilitarian alternative
in Ŷ otherwise. ti(θ; Ŷ ) is the generalized pivotal transfer rule associated with α̂(θ; Ŷ ).
For any y ≤ ȳ, let

tSi (θ; {0, 1, . . . , y}) = ti(θ; {0, 1}) + ti(θ; {α̂(θ; {0, 1}), 2})
+ ti(θ; {α̂(θ; {α̂(θ; {0, 1}), 2}), 3}) + . . .+ ti(θ; {α̂(θ; . . .), y})
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be the total transfer associated with running a sequence of binary pivotal mechanisms,
where the selected alternative from {0, 1} is run against 2, the selected alternative
from that mechanism is run against 3, and so on. Let ti(θ) = ti(θ;Y ) and tSi (θ) =
tSi (θ;Y ) be the generalized pivotal transfer and the sequential generalized pivotal
transfer for i, respectively.

Lemma 1. Given any finite environment EF ∈ EF , t
S
i (θ) ≥ ti(θ) for all θ.

Proof. First notice that

tSi (θ) = ti(θ; {0, 1}) + ti(θ; {α̂(θ; {0, 1}), 2})
+ ti(θ; {α̂(θ; {0, 1, 2}), 3}) + . . .+ ti(θ; {α̂(θ; {0, 1, . . . , ȳ − 1}), ȳ}).

We now proceed by induction.

Step 1. We would like to show tSi (θ; {0, 1}) ≥ ti(θ; {0, 1}). By definition, tSi (θ; {0, 1}) =
ti(θ; {0, 1}).

Step 2. Suppose by induction that tSi (θ; {0, . . . , y}) ≥ ti(θ; {0, . . . , y}). We would like to
show that tSi (θ; {0, . . . , y + 1}) ≥ ti(θ; {0, . . . , y + 1}).

Case 1. Suppose α̂(0, θ−i; {0, . . . , y + 1}) = y + 1. Then y∗ ≡ α̂(θ; {0, . . . , y + 1}) ≤ y + 1,
and by Proposition 2, y∗ ∈ A∗(0, θ−i; {0, . . . , y + 1}). Hence, ti(θ; {0, . . . , y + 1}) = 0. The
result follows since generalized pivotal payments are non-negative.

Case 2. Suppose α̂(0, θ−i; {0, . . . , y + 1}) < y + 1. We have

ti(θ; {0, . . . , y+1}) = 1

λi

(∑
j ̸=i

λjvj(α̂(0, θ−i; {0, . . . , y+1}), θj)−
∑
k∈I

λkck(α̂(0, θ−i; {0, . . . , y+1}))
)

− 1

λi

(∑
j ̸=i

λjvj(α̂(θ; {0, . . . , y + 1}), θj)−
∑
k∈I

λkck(α̂(θ; {0, . . . , y + 1}))
)

and

tSi (θ; {0, . . . , y + 1}) = tSi (θ; {0, . . . , y})

+
1

λi

(∑
j ̸=i

λjvj(α̂(0, θ−i; α̂(θ; {0, . . . , y}) ∪ {y + 1}), θj)−
∑
k∈I

λkck(α̂(0, θ−i; α̂(θ; {0, . . . , y}) ∪ {y + 1}))
)

− 1

λi

(∑
j ̸=i

λjvj(α̂(θ; α̂(θ; {0, . . . , y}) ∪ {y + 1}), θj)−
∑
k∈I

λkck(α̂(θ; α̂(θ; {0, . . . , y}) ∪ {y + 1}))
)
.
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Hence,

tSi (θ; {0, . . . , y + 1})− ti(θ; {0, . . . , y + 1}) = tSi (θ; {0, . . . , y})

+
1

λi

(∑
j ̸=i

λjvj(α̂(0, θ−i; α̂(θ; {0, . . . , y}) ∪ {y + 1}), θj)−
∑
k∈I

λkck(α̂(0, θ−i; α̂(θ; {0, . . . , y}) ∪ {y + 1}))
)

− 1

λi

(∑
j ̸=i

λjvj(α̂(0, θ−i; {0, . . . , y + 1}), θj)−
∑
k∈I

λkck(α̂(0, θ−i; {0, . . . , y + 1}))
)

≥ 1

λi

(∑
j ̸=i

λjvj(α̂(0, θ−i; {0, . . . , y}), θj)−
∑
k∈I

λkck(α̂(0, θ−i; {0, . . . , y}))
)

− 1

λi

(∑
j ̸=i

λjvj(α̂(θ; {0, . . . , y}), θj)−
∑
k∈I

λkck(α̂(θ; {0, . . . , y}))
)

+
1

λi

(∑
j ̸=i

λjvj(α̂(0, θ−i; α̂(θ; {0, . . . , y}) ∪ {y + 1}), θj)−
∑
k∈I

λkck(α̂(0, θ−i; α̂(θ; {0, . . . , y}) ∪ {y + 1}))
)

− 1

λi

(∑
j ̸=i

λjvj(α̂(0, θ−i; {0, . . . , y + 1}), θj)−
∑
k∈I

λkck(α̂(0, θ−i; {0, . . . , y + 1}))
)

= − 1

λi

(∑
j ̸=i

λjvj(α̂(θ; {0, . . . , y}), θj)−
∑
k∈I

λkck(α̂(θ; {0, . . . , y}))
)

+
1

λi

(∑
j ̸=i

λjvj(α̂(0, θ−i; α̂(θ; {0, . . . , y}) ∪ {y + 1}), θj)−
∑
k∈I

λkck(α̂(0, θ−i; α̂(θ; {0, . . . , y}) ∪ {y + 1}))
)

≥ 0,

where the first equality follows by α̂(θ; {0, . . . , y+1}) = α̂(θ; α̂(θ; {0, . . . , y})∪{y+1}), the
first inequality by the inductive hypothesis, and the final equality by the Case 2 assumption.

■

Proposition 3. Consider any finite environment EF ∈ EF and suppose Assump-
tion 2. For any θ ∈ Θ, the total generalized pivotal payment can be no less than zero
and no more than λH

λL
c(α(θ)), and the total CSP payment can be no less than zero and

no more than λH

λL
c(α(θ)) + c(ȳ). That is,

1. 0 ≤
∑n

i=1 ti(θ) ≤
λH

λL
c(α(θ)) and

2. 0 ≤
∑n

i=1 τi(θ) ≤
λH

λL
c(α(θ)) + c(ȳ),

where ti(θ) is i’s transfer in a generalized pivotal mechanism and τi(θ) = ti(θ) +
ci(α(0, θ−i)) is i’s transfer in a CSP mechanism. If the decision rule is monotone,
the upper bound on the total CSP payment can be lowered to λH+λL

λL
c(α(θ)).

Proof. Part I. Step 1. First, we show 0 ≤
∑n

i=1 ti(θ) ≤ λH
λL

c(α(θ)) for any binary en-

vironment EB ∈ EB. Consider any θ, θ̂ ∈ Θ where vk(1, θ̂k) < vk(1, θk) for some k and
vj(1, θ̂j) = vj(1, θj) for all j ̸= k.
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1. If
∑n

i=1 λivi(1, θi) <
∑n

i=1 λici(1),
∑n

i=1 ti(θ) =
∑n

i=1 ti(θ̂) = 0.

2. If
∑n

i=1 λivi(1, θi) ≥
∑n

i=1 λici(1) and
∑n

i=1 λivi(1, θ̂i) <
∑n

i=1 λici(1),
∑n

i=1 ti(θ) ≥
0 =

∑n
i=1 ti(θ̂).

3. If
∑n

i=1 λivi(1, θi) ≥
∑n

i=1 λici(1) and
∑n

i=1 λivi(1, θ̂i) ≥
∑n

i=1 λici(1),
∑n

i=1 ti(θ̂) ≥∑n
i=1 ti(θ) ≥ 0.

To see (3), notice that k’s generalized pivotal payment remains unchanged between θ and θ̂.
Consider any j ̸= k. If j is pivotal under θ−j , then she remains pivotal under θ̂−j and her
generalized pivotal payment strictly increases. If j is not pivotal under θ−j and remains not

pivotal under θ̂−j , her generalized pivotal payment remains zero. If j is not pivotal under

θ−j , but is pivotal under θ̂−j , her payment increases from zero to some positive amount.

Hence, to maximize
∑n

i=1 ti(θ) with respect to θ, it must be that
∑n

i=1 λivi(1, θi) =
∑n

i=1 λici(1)
and the good is produced, i.e., every i is exactly pivotal. In this case, each i’s generalized
pivotal payment is vi(1, θi), and the total generalized pivotal payment is

∑n
i=1 vi(1, θi).

We now show that
∑n

i=1 vi(1, θi) is bounded from above by λH
λL

c under Assumption 2. For
ease of notation, let vi ≡ vi(1, θi) and ci ≡ ci(1). We seek

max
(λi,vi,ci)i∈I

n∑
i=1

vi subject to
n∑

i=1

λivi =
n∑

i=1

λici.

The solution involves placing all the value on individuals with the lowest λi (without loss
of generality, a single individual k) and all the cost share on individuals with the highest λi

(without loss of generality, a single individual l), so that cj = 0 for all j ̸= l, cl = c, vj = 0
for all j ̸= k, and λLvk = λHc. Hence,

n∑
i=1

vi ≤
λH

λL
c.

Since the total generalized pivotal payment is zero when the good is not produced, the Step
1 result follows.

Step 2. We now show this holds for any finite environment EF ∈ EF . To show that the
total generalized pivotal payment is non-negative, note that individual generalized pivotal
payments are themselves non-negative. To show that the total generalized pivotal payment
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is no more than λH
λL

c(α(θ)), note that

n∑
i=1

ti(θ) ≤
n∑

i=1

tSi (θ)

=
n∑

i=1

ti(θ; {0, 1}) + ti(θ; {α̂(θ; {0, 1}), 2})

+ ti(θ; {α̂(θ; {α̂(θ; {0, 1}), 2}), 3}) + . . .+ ti(θ; {α̂(θ; . . .), ȳ})

≤ λH

λL

(
c(α̂(θ; {0, 1}))− c(0)

)
+

λH

λL

(
c(α̂(θ; {α̂(θ; {0, 1}), 2}))− c(α̂(θ; {0, 1}))

)
+

λH

λL

(
c(α̂(θ; {α̂(θ; {α̂(θ; {0, 1}), 2}), 3}))− c(α̂(θ; {α̂(θ; {0, 1}), 2}))

)
+ . . .+

λH

λL

(
c(α̂(θ; {α̂(θ; . . .), ȳ}))− c(α̂(θ; {α̂(θ; . . .), ȳ − 1}))

)
=

λH

λL

(
c(α̂(θ; {α̂(θ; . . .), ȳ}))− c(0)

)
=

λH

λL
c(α(θ)),

where the first inequality follows by Lemma 1 and the second inequality follows by Step 1.

Part II. The fair share payment ci(α(0, θ−i)) is always non-negative. Hence, the total CSP
payment is no less than zero.

The total generalized pivotal payment
∑n

i=1 ti(θ) is no more than λH
λL

c(α(θ)) by Part I. The

total fair share payment
∑n

i=1 ci(α(0, θ−i)) can be no more than c(ȳ), since
∑n

i=1 ci(α(0, θ−i)) ≤∑n
i=1 ci(ȳ) = c(ȳ), and with a monotone decision rule can be no more than c(α(θ)), since∑n
i=1 ci(α(0, θ−i)) ≤

∑n
i=1 ci(α(θ)) = c(α(θ)). Hence, the total CSP payment can be no

more than λH
λL

c(α(θ))+c(ȳ) and with a monotone decision rule, no more than λH+λL
λL

c(α(θ)).

■

Let EB ⊂ EF denote the set of binary public good environments, i.e., the set of finite
public good environments with ȳ = 1.

Lemma 2. Consider any sequence of i.i.d. random vectors (θi, zi) defined on (Ω,A,P)
such that E(θi(1)2) < ∞, and consider any induced sequence of binary public good
environments En

B ∈ EN
B satisfying Assumption 2. The probability that there is at least

one pivotal player in En
B goes to zero as n goes to infinity.

Proof. Let θi ≡ θi(1), cn ≡ cn(1), and cni (z
n) ≡ cni (1, z

n). θi is an i.i.d. sequence of random
variables representing each i’s willingness to pay for the public good, cn is an arbitrary
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sequence of real numbers representing the total cost of the public good in an environment
with population size n, and (cni (z

n))ni=1 is a (non-i.i.d.) sequence of random vectors repre-
senting the cost share for each individual i in an environment with population size n given
the profile of observable characteristics zn. Let µ ≡ E(θi) be the mean willingness to pay
for the good, σ2 ≡ Var(θi), and θ∗n ≡ maxi∈{1,...,n} θi. Then we have that

P(k is pivotal in En
B) ≤ P(

∑
j ̸=k, j≤n

λj(zj)θj ≤
n∑

i=1

λi(zi)c
n
i (z

n) and

n∑
i=1

λi(zi)θi ≥
n∑

i=1

λi(zi)c
n
i (z

n))

and

P (∃ pivotal player in En
B)

≤ P
(
∃k :

∑
j ̸=k, j≤n

λj(zj)θj ≤
n∑

i=1

λi(zi)c
n
i (z

n) and
n∑

i=1

λi(zi)θi ≥
n∑

i=1

λi(zi)c
n
i (z

n)
)

= P
(
∃k : 0 ≤

n∑
i=1

λi(zi)c
n
i (z

n)−
∑

j ̸=k, j≤n

λj(zj)θj and λk(zk)θk ≥
n∑

i=1

λi(zi)c
n
i (z

n)−
∑

j ̸=k, j≤n

λj(zj)θj

)
≤ P

(
∃k : λk(zk)θk ≥

∣∣∣ ∑
j ̸=k, j≤n

λj(zj)θj −
n∑

i=1

λi(zi)c
n
i (z

n)
∣∣∣)

≤ P
(
∃k : 2λk(zk)θk ≥

∣∣∣ n∑
i=1

λi(zi)θi −
n∑

i=1

λi(zi)c
n
i (z

n)
∣∣∣)

≤ P
(
∃k : 2λHθk ≥ λL

∣∣∣ n∑
i=1

θi −
n∑

i=1

cni (z
n)
∣∣∣)

= P
(
θ∗n ≥ λL

2λH

∣∣∣ n∑
i=1

θi − cn

∣∣∣),
where the third inequality follows by the triangle inequality and the fourth by Assumption 2.
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We would now like to show that P
(
θ∗n ≥ λL

2λH

∣∣∣∑n
i=1 θi− cn

∣∣∣) → 0 as n → ∞. For any ε > 0,

P
(
θ∗n ≥ λL

2λH

∣∣∣ n∑
i=1

θi − cn

∣∣∣)
= P

( θ∗n
σ
√
n
≥ λL

2λH

∣∣∣∑n
i=1(θi − µ)

σ
√
n

− cn − µn

σ
√
n

∣∣∣)
= P

( θ∗n
σ
√
n
≥ λL

2λH

∣∣∣∑n
i=1(θi − µ)

σ
√
n

− cn − µn

σ
√
n

∣∣∣, λL

2λH

∣∣∣∑n
i=1(θi − µ)

σ
√
n

− cn − µn

σ
√
n

∣∣∣ > ελL

2λH

)
+ P

( θ∗n
σ
√
n
≥ λL

2λH

∣∣∣∑n
i=1(θi − µ)

σ
√
n

− cn − µn

σ
√
n

∣∣∣, λL

2λH

∣∣∣∑n
i=1(θi − µ)

σ
√
n

− cn − µn

σ
√
n

∣∣∣ ≤ ελL

2λH

)
≤ P

( θ∗n
σ
√
n
>

ελL

2λH

)
+ P

(∣∣∣∑n
i=1(θi − µ)

σ
√
n

− cn − µn

σ
√
n

∣∣∣ ≤ ε
)

= P
( θ∗n
σ
√
n
>

ελL

2λH

)
+ P

(∑n
i=1(θi − µ)

σ
√
n

≤ cn − µn

σ
√
n

+ ε
)
− P

(∑n
i=1(θi − µ)

σ
√
n

<
cn − µn

σ
√
n

− ε
)

≡ P
( θ∗n
σ
√
n
>

ελL

2λH

)
+ Fn

(cn − µn

σ
√
n

+ ε
)
− Fn

(cn − µn

σ
√
n

− ε
)
,

where Fn is the cdf of
∑n

i=1(θi−µ)

σ
√
n

. θ∗n
σ
√
n

p→ 0 by Rob (1982, pp. 211-212, proof of Lemma 1

and 2), so P( θ∗n
σ
√
n
> ελL

2λH
) → 0 as n → ∞. We would now like to show that Fn(

cn−µn
σ
√
n

+ ε)−
Fn(

cn−µn
σ
√
n

− ε) → 0 as n → ∞.

∑n
i=1(θi−µ)

σ
√
n

d→ N(0, 1) by the central limit theorem. By van der Vaart (1998, p. 12, Lemma

2.11), if a sequence of random variables Xn with cdf Gn converges in distribution to a
random variable X with cdf G and G is continuous, then Gn → G uniformly. In particular,
for any δ > 0 there exists N ∈ N such that for all n > N and x ∈ R, |Gn(x)−G(x)| < δ.

Let Φ denote the cdf of a standard normal, which is continuous. Then Fn → Φ uniformly
and for any x ∈ R and n > N ,∣∣∣(Fn(x+ ε)− Fn(x− ε)

)
−
(
Φ(x+ ε)− Φ(x− ε)

)∣∣∣
=

∣∣∣(Fn(x+ ε)− Φ(x+ ε)
)
+
(
Φ(x− ε)− Fn(x− ε)

)∣∣∣
≤ |Fn(x+ ε)− Φ(x+ ε)|+ |Fn(x− δ)− Φ(x− δ)|
< 2δ.

Note that maxxΦ(x+ ε)− Φ(x− ε) = Φ(ε)− Φ(−ε). Hence, for any ε, δ > 0, there exists
N such that for all n > N ,

0 ≤ Fn

(cn − µn

σ
√
n

+ ε
)
− Fn

(cn − µn

σ
√
n

− ε
)
≤ Φ(ε)− Φ(−ε) + 2δ,

and, since Φ(ε)− Φ(−ε) → 0 as ε → 0, the result follows. ■
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Proposition 4. Consider any sequence of i.i.d. random vectors (θi, zi) defined on
(Ω,A,P) such that E((θi(y1) − θi(y0))

2) < ∞ for all y0, y1 ∈ Y , and consider any
induced sequence of finite environments En

F ∈ EN
F satisfying Assumption 2. The prob-

ability that there is at least one pivotal player in En
F goes to zero as n goes to infinity.

Proof. For any y0, y1 ∈ Y with y0 < y1, let Ŷ = {y0, y1} and En
B(Ŷ ) ∈ En

B be the en-

vironment En
F ∈ En

F with Ŷ substituted for Y . For any i ∈ I, let θ̂i ≡ θi(y1) − θi(y0)

and ĉn ≡ cn(y1) − cn(y0). Note that (θ̂i)i∈N is i.i.d. and E(θ̂2i ) < ∞, so by Lemma 2,
P(∃ pivotal player in En

B(Ŷ )) → 0 as n → ∞.

Let Ŷ = {{y0, y1} : y0, y1 ∈ Y and y0 < y1}. Note that |Ŷ| = K(K + 1)/2. Then

P (∃ pivotal player in En
F ) ≤ P

(
∃Ŷ ∈ Ŷ : ∃ pivotal player in En

B(Ŷ )
)

≤
∑
Ŷ ∈Ŷ

P
(
∃ pivotal player in En

B(Ŷ )
)

→ 0 as n → ∞.

■

Theorem 4. Consider any sequence of i.i.d. random vectors (θi, zi) defined on (Ω,A,P)
such that E((θi(y1) − θi(y0))

2) < ∞ for all y0, y1 ∈ Y , and consider any induced se-
quence of finite environments En

F ∈ EN
F satisfying Assumption 2. Any sequence of

cost-sharing pivotal mechanisms (αn, τn) is asymptotically ex-post budget-balanced.

Proof. Part I. The probability that no agent is pivotal goes to one by Proposition 4, and
the CSP is EPBB when no agent is pivotal.

Part II. Let Sn(θn, zn) ≡
∑n

i=1 τ
n
i (θ

n, zn) − cn(αn(θn, zn)) be the budget surplus of the
CSP mechanism (αn, τn). Let Πn be the event in which there exists a pivotal player in En

F .

Case 1. Suppose cn(ȳ)
n ↛ ∞ as n → ∞. Then

1

n
E(

∣∣Sn(θn, zn)
∣∣) = 1

n
E(

∣∣Sn(θn, zn)
∣∣ | Πn) · P(Πn) +

1

n
E(

∣∣Sn(θn, zn)
∣∣ | ¬Πn) · P(¬Πn)

≤ λH

λL
· c

n(ȳ)

n
· P(Πn)

→ 0 as n → ∞,

where the inequality follows by Proposition 3 (the distance from EPBB in a CSP is bounded
by λH

λL
c(ȳ) since λH

λL
c(α(θ)) + c(ȳ) − c(α(θ)) = λH−λL

λL
c(α(θ)) + c(ȳ) ≤ λH−λL

λL
c(ȳ) + c(ȳ) =

λH
λL

c(ȳ)) and the last line follows by Proposition 4.

Case 2. Suppose cn(ȳ)
n → ∞ as n → ∞. Let y∗ be the smallest y such that cn(y)

n → ∞ as

n → ∞. Since cn(y) is non-decreasing in y for all n, cn(y)
n → ∞ for any y ≥ y∗.
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If for all y ≥ ŷ the total welfare benefit is strictly smaller than the total welfare cost,∑n
i=1 λi(zi)θi(y) <

∑n
i=1 λi(zi)c

n
i (y, z

n), then the total fair share payment
∑n

i=1 c
n
i (α(0, θ−i), z

n)
can be no more than cn(ŷ − 1), since any y ≥ ŷ is never an efficient decision without
i for any i. Hence, the total CSP payment can be no less than zero and no more than
λH
λL

cn(α(θ)) + cn(ŷ − 1) by Proposition 3, and the distance from EPBB is bounded by
λH
λL

cn(ŷ − 1).

Let

<(y) ≡
n∑

i=1

λi(zi)θi(y) <
n∑

i=1

λi(zi)c
n
i (y, z

n) and ≥(y) ≡
n∑

i=1

λi(zi)θi(y) ≥
n∑

i=1

λi(zi)c
n
i (y, z

n)

be the event that the total welfare benefit is strictly smaller, or weakly larger, than the
welfare cost of alternative y, respectively. Then

1

n
E(

∣∣Sn(θn, zn)
∣∣) = 1

n
E(

∣∣Sn(θn, zn)
∣∣ | ∀y ≥ y∗, <(y))P(∀y ≥ y∗, <(y))

+
1

n
E(

∣∣Sn(θn, zn)
∣∣ | ∃y ≥ y∗, ≥(y))P(∃y ≥ y∗, ≥(y)).

We now show each term goes to zero. Let µy = E(θi(y)) and σ2
y = Var(θi(y)). Then

1

n
E(

∣∣Sn(θn, zn)
∣∣ | ∀y ≥ y∗, <(y))

=
1

n
E(

∣∣Sn(θn, zn)
∣∣ | Πn and ∀y ≥ y∗, <(y)) · P(Πn | ∀y ≥ y∗, <(y))

+
1

n
E(

∣∣Sn(θn, zn)
∣∣ | ¬Πn and ∀y ≥ y∗, <(y)) · P(¬Πn | ∀y ≥ y∗, <(y))

≤ λH

λL
· c

n(ŷ − 1)

n
· P(Πn)

P(∀y ≥ y∗, <(y))

→ 0 as n → ∞,

where the inequality follows by Proposition 3 and the last line follows by Proposition 4 and

P(∃y ≥ y∗, ≥(y)) ≤
ȳ∑

y=y∗

P
( n∑

i=1

λi(zi)θi(y) ≥
n∑

i=1

λi(zi)c
n
i (y, z

n)
)

≤
ȳ∑

y=y∗

P
(
λH

n∑
i=1

θi(y) ≥ λL

n∑
i=1

cni (y, z
n)
)

=

ȳ∑
y=y∗

P
( 1

n

n∑
i=1

θi(y) ≥
λL

λH

cn(y)

n

)
→ 0 as n → ∞,

since for all y ≥ y∗, 1
n

∑n
i=1 θi(y)

p→ µy by the law of large numbers and cn(y)
n → ∞ by

assumption.
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Finally,

1

n
E(

∣∣Sn(θn, zn)
∣∣ | ∃y ≥ y∗, ≥(y))P(∃y ≥ y∗, ≥(y))

=
1

n
E(

∣∣Sn(θn, zn)
∣∣ | ≥(y∗), <(y∗ + 1), . . . , <(ȳ))

× P(≥(y∗), <(y∗ + 1), . . . , <(ȳ))

+
1

n
E(

∣∣Sn(θn, zn)
∣∣ | ≥(y∗ + 1), <(y∗ + 2), . . . , <(ȳ))

× P(≥(y∗ + 1), <(y∗ + 2), . . . , <(ȳ))

+ . . .

+
1

n
E(

∣∣Sn(θn, zn)
∣∣ | ≥(ȳ))× P(≥(ȳ))

≤ λH

λL
· c

n(y∗)

n
· P(≥(y∗)) +

λH

λL
· c

n(y∗ + 1)

n
· P(≥(y∗ + 1)) + . . .+

λH

λL
· c

n(ȳ)

n
· P(≥(ȳ)).

For any y = y∗, . . . , ȳ, there exists N ∈ N such that for all n > N , cn(y)
n > λH

λL
µy and

cn(y)

n
· P(≥(y)) =

cn(y)

n
· P

( n∑
i=1

λi(zi)θi(y) ≥
n∑

i=1

λi(zi)c
n
i (y, z

n)
)

≤ cn(y)

n
· P

(
λH

n∑
i=1

θi(y) ≥ λL

n∑
i=1

cni (y, z
n)
)

=
cn(y)

n
· P

( n∑
i=1

θi(y) ≥
λL

λH
cn(y)

)
≤ cn(y)

n
· P

(∣∣∣ n∑
i=1

θi(y)− nµy

∣∣∣ ≥ ∣∣∣ λL

λH
cn(y)− nµy

∣∣∣)
≤ cn(y)

n
·

nσ2
y(

λL
λH

cn(y)− nµy

)2
=

cn(y)

n
·

σ2
y

n
(
λL
λH

cn(y)
n − µy

)2
→ 0 as n → ∞,

where the first inequality follows by Assumption 2, the second inequality by cn(y)
n > λH

λL
µy,

and the last inequality by Chebyshev’s inequality. ■

Theorem 5. Consider any sequence of i.i.d. random vectors (θi, zi) defined on (Ω,A,P)
such that E((θi(y1) − θi(y0))

2) < ∞ for all y0, y1 ∈ Y , and consider any induced se-
quence of finite environments En

F ∈ EN
F satisfying Assumption 2. Let αn be a sequence

of utilitarian and monotone decision rules and τn be a sequence of CSP transfer
rules. A sequence of utilitarian and monotone mechanisms (αn, τ̂n) satisfies asymp-
totic ex-post budget-balance, strategy-proofness for each n, and cost-sharing universal
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participation for each n if and only if, for all i,

τ̂ni (θ
n, zn) = τni (θ

n, zn) + hn
i (θ

n
−i, z

n),

for some sequence of functions hn
i : Θn−1

0 × Zn
0 → R such that

1. hn
i (θ

n
−i, z

n) ≤ 0 for all θn−i ∈ Θn−1
0 , zn ∈ Zn

0 , i, and n,

2. limn→∞ P(hn
i (θ

n
−i, z

n) = 0 for all i) = 1, and

3. limn→∞
1
n

∑n
i=1 E(hn

i (θ
n
−i, z

n)) = 0.

The same holds replacing cost-sharing universal participation with the fair pricing
principle per unit. Under Assumption 1, the same holds replacing the fair pricing
principle per unit with the fair pricing principle.

Proof. Part I. We would like to show that (αn, τ̂n) satisfies strategy-proofness and CS-UP
(the FPP per unit, and the FPP under Assumption 1) for each n if and only if, for all i,
τ̂ni (θ

n, zn) = τni (θ
n, zn) + hni (θ

n
−i, z

n) for some sequence of functions hni : Θn−1
0 × Zn

0 → R
such that (1). This follows immediately from Proposition 1 and Theorem 2 (Theorem 3). □

Part II. We would like to show that (αn, τ̂n) satisfies strategy-proofness, CS-UP (the FPP
per unit, and the FPP under Assumption 1) for each n, and that the probability of EPBB
goes to 0 as n → ∞ if and only if, for all i, τ̂ni (θ

n, zn) = τni (θ
n, zn) + hni (θ

n
−i, z

n) for some

sequence of functions hni : Θn−1
0 × Zn

0 → R such that (1) and (2).

P
( n∑

i=1

τ̂ni (θ
n, zn)− cn(αn(θn, zn)) = 0

)
= P

( n∑
i=1

τ̂ni (θ
n, zn)− cn(αn(θn, zn) = 0 | ¬∃ pivotal player in En

F

)
P(¬∃ pivotal player in En

F )

+ P
( n∑

i=1

τ̂ni (θ
n, zn)− cn(αn(θn, zn) = 0 | ∃ pivotal player in En

F

)
P(∃ pivotal player in En

F )

≡ P(EPBB | no one pivotal)P(no one pivotal) + P(EPBB | someone pivotal)P(someone pivotal).

Hence,

lim
n→∞

P(EPBB) = lim
n→∞

P(EPBB | no one pivotal) lim
n→∞

P(no one pivotal)

+ lim
n→∞

P(EPBB | someone pivotal) lim
n→∞

P(someone pivotal)

= lim
n→∞

P(EPBB | no one pivotal)

= lim
n→∞

P
( n∑

i=1

hni (θ
n
−i, z

n) = 0 | no one pivotal
)

= lim
n→∞

P(hni (θn−i, z
n) = 0 ∀i | no one pivotal)

= lim
n→∞

P(hni (θn−i, z
n) = 0 ∀i),
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where the second line follows since limn→∞ P(someone pivotal) = 0 (proof of Theorem 4
Part I), the third line follows since a CSP is EPBB when no one is pivotal, the fourth line
follows from Part I, and the last line follows since

lim
n→∞

P(hni (θn−i, z
n) = 0 ∀i)

= lim
n→∞

P(hni (θn−i, z
n) = 0 ∀i | no one pivotal) lim

n→∞
P(no one pivotal)

+ lim
n→∞

P(hni (θn−i, z
n) = 0 ∀i | someone pivotal) lim

n→∞
P(someone pivotal)

= lim
n→∞

P(hni (θn−i, z
n) = 0 ∀i | no one pivotal).

□

Part III. We would like to show that (αn, τ̂n) is such that the expected distance from EPBB
goes to 0 as n → ∞ if and only if, for all i, τ̂ni (θ

n, zn) = τni (θ
n, zn) + ĥni (θ

n, zn) for some
sequence of functions ĥni : Θn

0 × Zn
0 → R such that limn→∞

1
n

∑n
i=1 E(ĥni (θn, zn)) = 0.

Any transfer rule can be represented by τ̂ni (θ
n, zn) = τni (θ

n, zn) + ĥni (θ
n, zn). Then

lim
n→∞

1

n
E
(∣∣∣ n∑

i=1

τni (θ
n, zn) + ĥni (θ

n, zn)− cn(αn(θn, zn))
∣∣∣) = 0

⇐⇒ lim
n→∞

1

n
E
(∣∣∣ n∑

i=1

τni (θ
n, zn)− cn(αn(θn, zn))

∣∣∣)+ lim
n→∞

1

n

n∑
i=1

E
(
ĥni (θ

n, zn)
)
= 0

where the second line follows since limx→∞ f(x) = 0 ⇐⇒ limx→∞|f(x)| = 051 and the
desired result follows by Theorem 4. □

The result follows from the conjunction of Parts I, II, and III. ■

51Notice |f(x)− 0| < ε ⇐⇒ ||f(x)| − 0| < ε.
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