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Abstract

I write down a government’s public good provision problem from first principles
and, contrary to popular wisdom, I find a solution. I call it the cost-sharing piv-
otal mechanism. Both the statement of the problem and the solution are new.
The cost-sharing pivotal mechanism satisfies a new participation constraint,
a new fairness principle, and is strategy-proof, efficient, and asymptotically
ex-post budget-balanced in large populations. Moreover, I show that a com-
monly used methodological simplification in mechanism design is not without
loss, standard participation constraints used in mechanism design are not well-
suited for these environments, and the most well-known mechanism for public
good provision, the Clarke mechanism, violates a basic fairness constraint—if
nothing is produced, no one should pay.

1 Introduction

A group of individuals would like to decide how much of a costly public good to
produce and how it should be funded. Ideally, the procedure they employ would (1)
provide incentives for each individual to truthfully reveal their value for the public
good, (2) provide incentives for each individual to participate, (3) produce the socially
optimal amount of the public good, (4) raise exactly enough revenue to produce this
amount, and (5) not tax anyone unfairly. Call this the public good provision problem.
It is well known that no decision procedure can satisfy all at once—indeed, Green and
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Laffont (1979) show that no mechanism can satisfy (1), (3), and (4) alone. I show
that, in large populations, there are procedures that come arbitrarily close.

In particular, I propose a mechanism which satisfies (1), (2), (3), and (5) exactly and
(4) arbitrarily closely as the population gets large. Formally, these properties corre-
spond to (1) strategy-proofness, (2) cost-sharing universal participation, (3) efficiency,
(4) asymptotic ex-post budget-balance, and (5) the fair pricing principle. (1), (3), and
(4) are standard properties in the literature. (2) and (5) are new desiderata proposed
in this paper. Cost-sharing universal participation states that each individual should
always prefer to participate in the mechanism rather than to not participate—that
is, rather than to receive the alternative chosen without her and to be taxed her fair
share of its cost. The fair pricing principle states that each individual should never
pay more than the maximum of her value for the chosen alternative and her fair share
of its cost.1

This mechanism can be seen as a generalization of the celebrated pivotal mecha-
nism2 to environments with implementation costs—environments where each social
alternative has some cost of implementation or production—and as such I call it
the cost-sharing pivotal mechanism. The mechanism is simple, intuitive, and detail-
free.3

The cost-sharing pivotal mechanism employs an efficient decision
rule and charges each individual her fair share of the cost of the decision
that would have been made without her plus the welfare loss imposed on
others by taking her preferences into account for the decision.

In other words, in a cost-sharing pivotal mechanism, the efficient level of the public
good is produced and each individual pays her fair share of the cost of what is pro-
duced, unless she is pivotal,4 in which case she pays her fair share of the cost of what
would have been produced without her plus enough to compensate the others for the
welfare loss imposed on them.

Importantly, this is not equivalent to the mechanism constructed via the standard
approach—the net value approach—to modeling implementation costs in these set-

1An individual’s fair share—what is, at the outset, considered a fair amount for an individual to
contribute towards the public good—is agreed upon in advance and can depend on any observable
traits including income level and distance from the public good. See Section 4 for a complete
discussion.

2The pivotal mechanism (also called the VCG mechanism after Vickrey (1961), Clarke (1971), and
Groves (1973)) is one mechanism within the Groves class—the class of strategy-proof and efficient
mechanisms in quasilinear environments with private values. I define it informally in Section 2.3
and formally in Section 5.

3A mechanism is detail-free if it does not depend on the distribution of values in the population
nor on any individual’s beliefs.

4An individual is pivotal if the decision made with her differs from the decision made without
her.
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tings. This produces the Clarke mechanism.5 I argue that the net value approach can
be shortsighted and, in particular, that the Clarke mechanism violates an extremely
weak and intuitive criterion—if nothing is produced, no one should pay.6 I call this
no-extortion.

The key takeaways from this paper, ordered sequentially, are fourfold.

1. The standard approach to modeling implementation costs in mechanism design—
embedding them within the individuals’ values (the net value approach)—is not
without loss of generality, contrary to popular wisdom.7 Keeping values and
costs separate provides a richer mathematical and conceptual structure, allow-
ing for a wider class of desiderata, mechanisms, and formal results—all of which
this paper builds upon.

2. If a governing body has the power to tax, standard participation constraints
(individual rationality and universal participation) are ill-suited desiderata for
public good provision mechanisms. A new participation constraint (cost-sharing
universal participation) and a new fairness principle (the fair pricing principle)
should be used instead.

3. A new mechanism, which I call the cost-sharing pivotal mechanism, is a solu-
tion to the public goods problem for large populations and is effectively the
unique solution. It satisfies strategy-proofness, efficiency, cost-sharing universal
participation, the fair pricing principle, no-extortion, and asymptotic ex-post
budget-balance.

4. The best-known proposed solution, the Clarke mechanism, violates cost-sharing
universal participation, the fair pricing principle, and no-extortion.

The rest of the paper is organized as follows. Section 2 contains a summary of the
paper and can be read as a complete description of the main ideas and results with
only the necessary formalism to convey them precisely. In particular, Sections 2.1,
2.2, 2.3, and 2.4 present each of the above key takeaways in turn. Section 3 contains
a review of the related literature. Sections 4, 5, 6, 7, and 8 contain the formal
model and results. I introduce each concept and prove each result within the most
general environment in which it applies. The sections are in decreasing order of
generality.

In Section 4, I define mechanism design environments in which implementation costs
are explicitly modeled.

5The Clarke mechanism was first proposed by Clarke (1971). The terms pivotal mechanism and
Clarke mechanism are used interchangeably in the literature—see e.g., Mas-Colell, Whinston and
Green (1995, p. 878). In this paper, I define them separately. See Sections 2.3 and 2.4 for an informal
discussion and Sections 5 and 6 for a formal discussion.

6See Example 1.
7See Green and Laffont (1979, p. 31).
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In Section 5, I consider environments with quasilinear preferences and private and
convex values and I introduce a generalized participation constraint—cost-sharing
universal participation—and use it to characterize the cost-sharing pivotal mechanism
(Theorem 1).

In Section 6, I discuss the standard approach to modeling implementation costs in
the literature—embedding cost shares into the individual’s values and, in doing so,
removing explicit implementation costs from the environment. I define the Clarke
mechanism and discuss the properties it satisfies, the properties it violates, and why.
I introduce a minimal fairness principle—no-extortion. I show that no strategy-proof
and efficient mechanism can satisfy no-deficit and no-extortion (Theorem 2). The
Clarke mechanism satisfies strategy-proofness, efficiency, and no-deficit and hence
violates no-extortion.

In Section 7, I consider environments with a unidimensional space of social alter-
natives with continuous and non-decreasing values.8 I introduce two new fairness
principles—the fair pricing principle and the fair pricing principle per unit—and use
them to characterize the cost-sharing pivotal mechanism (Theorem 3). I show that
the cost-sharing pivotal mechanism is undominated, in that no suitable mechanism
always comes closer to ex-post budget-balance (Theorem 4).

In Section 8, I consider environments with an ordered and finite space of social alter-
natives with non-decreasing values. I show that the cost-sharing pivotal mechanism
is asymptotically ex-post budget-balanced (Theorem 5) and that it is effectively the
unique such suitable mechanism (Theorem 6).

Section 9 concludes. All proofs are included in the main body or in Appendix B. A
proof sketch or commentary is provided in the main body whenever the full proof is
omitted.

2 Key Insights and Main Results

In this section, I discuss each of the four key takeaways of the paper. This encompasses
all of the main results and can be taken as a complete summary of the paper with
only the necessary formalism to convey the ideas precisely.

8This is the canonical and most general case of a single public good provision problem, whose
provision levels can be infinitely fine-grained, and for whom all individuals cannot be made worse
off by higher provision levels (the public good cannot be a bad).
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2.1 The net value approach is not without loss of general-
ity

The standard approach to modeling implementation costs in mechanism design is to
exogenously assign cost shares to individuals, embed these cost shares into their value
for the alternatives, and proceed with the analysis as if there were no implementation
costs to begin with. Each individual is required to pay their share of the cost of
whatever alternative is chosen, and they simply report their value for each alternative
net of this amount. This quantity is called the individual’s net value, and we may call
this approach the net value approach. The idea is that it is without loss of generality
to study environments without implementation costs, since implementation costs can
always be baked into the alternatives in this way.9 Indeed, Green and Laffont (1979,
p. 31) even contend that “there is no real alternative to this approach.” This paper
shows otherwise. In particular, keeping values and costs separate provides a richer
mathematical and conceptual structure which allows for a wider class of desiderata,
mechanisms, and formal results than can be constructed under the net value approach.
I discuss important examples of each below.

Universal participation is a desirable participation constraint in public good environ-
ments without implementation costs. Under the net value approach, there is just
one way to generalize conditions from environments without implementation costs to
those with them—by netting out costs from each individual’s value and proceeding
as if there were no implementation costs. Generalizing universal participation to such
environments using the net value approach gives rise to a distinct condition I call
net-value universal participation. As discussed in Sections 2.2 and 6, this condition is
rather unnatural. By contrast, keeping values and costs separate allows for a wider
space of generalizations, and I propose that the most appropriate generalization of
universal participation to environments with implementation costs is instead a new
participation constraint I call cost-sharing universal participation.

Similarly, the pivotal mechanism is a desirable mechanism in public good environ-
ments without implementation costs. Under the net value approach, there is just one
way to generalize mechanisms from environments without implementation costs to
those with them. Generalizing the pivotal mechanism to such environments using the
net value approach gives rise to the Clarke mechanism. As discussed in Sections 2.4
and 6, the Clarke mechanism violates several reasonable participation and fairness
criteria. By contrast, keeping values and costs separate allows first, for a wider space
of generalizations and second, for a more careful and precise specification of the public
good provision problem itself. These insights lead to a relatively natural solution—a
new mechanism I call the cost-sharing pivotal mechanism. Defining the public good
provision problem in this way and showing how and why the cost-sharing pivotal

9See Green and Laffont (1979, p. 29). See also Moulin (1988, p. 205), Varian (1992, p. 426), and
Mas-Colell, Whinston and Green (1995, p. 877).
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mechanism is a natural solution, and effectively the unique solution, is a primary
contribution of this paper.

Finally, the net value approach significantly constrains the generality of large popu-
lation results. In these results, one supposes that values are i.i.d. draws from some
distribution and derives properties of the mechanism in question for environments
with large populations. If we instead suppose that net values are i.i.d. draws from
some distribution, this bakes in the additional assumption that 1) cost shares are split
equally across individuals and 2) costs increase linearly with population size. As dis-
cussed in Section 8, these are significant assumptions and should be avoided whenever
possible. On the other hand, by keeping values and costs separate I avoid these as-
sumptions and, moreover, show that the large population results for the cost-sharing
pivotal mechanism are robust to any specification of cost shares—including those
which are constructed from observable data such as income, which may be correlated
with individual values—and any relation between costs and population size.

2.2 A new participation constraint and fairness principle for
public good provision

Participation constraints can be interpreted both as giving incentives for participa-
tion and as capturing some notion of fairness. Under either interpretation, standard
participation constraints are not well-suited for public good provision environments
in which a government has the power to tax. I propose a new participation constraint
called cost-sharing universal participation and a new fairness principle called the fair
pricing principle.

A participation constraint requires that each individual prefers to participate in the
mechanism rather than to not participate and receive some outside option. The most
widely-used participation constraint is individual rationality, where the outside option
is some fixed outcome with a payoff of zero.

Individual Rationality. Each individual should always prefer to par-
ticipate in the mechanism rather than to not participate—that is, rather
than to consume nothing and to pay nothing.

This is fitting, for example, in an auction setting, where the outcome from not par-
ticipating is in fact to consume and pay nothing. However, it is not fitting in a
public goods setting, where each individual consumes what the mechanism produces
no matter if they participate or not—since public goods are by definition non-rival
and non-excludable. If there is no governing body with the power to tax (or there are
no implementation costs), this fact is captured by a participation constraint known
as universal participation.10

10See Green and Laffont (1979, Chapter 6) for a similar discussion of individual rationality and
universal participation. Universal participation is sometimes called no-free-ride—see e.g., Moulin
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Universal Participation. Each individual should always prefer to par-
ticipate in the mechanism rather than to not participate—that is, rather
than to receive the alternative chosen without her and to pay nothing.

That said, if there is a governing body with the power to tax (and there are imple-
mentation costs), not participating need not result in zero taxes. In practice, many
public goods are funded by tax dollars which violate universal participation (e.g.,
my tax dollars may go to fund a park for which I have zero value). I propose the
following condition which captures a natural participation criterion for public good
environments when a government has the power to tax.

Cost-Sharing Universal Participation. Each individual should al-
ways prefer to participate in the mechanism rather than to not participate—
that is, rather than to receive the alternative chosen without her and to
be taxed her fair share of its cost.

Each individual’s fair share of the cost of a public good is agreed upon in advance and
can in principle depend on any observable traits (including income, physical distance
from the good, etc.)—just not the individual’s report of her value for the good itself.11

Cost-sharing universal participation simply appends to universal participation that,
in addition to receiving what is produced without her, an individual is also taxed her
fair share of its cost.

Instead of explicitly defining a constraint that contains values and costs separately,
it is common in the literature to use the net value approach and to embed costs
into each individual’s value for the alternatives. Because universal participation is a
desirable constraint without implementation costs, it is often simply presumed that a
mechanism which satisfies universal participation will continue to be desirable when
adding implementation costs in this way. In fact, to my knowledge nobody has taken
the step of explicitly spelling out what universal participation states when net values
are employed. Since doing so indeed produces a distinct constraint, I give it its own
name—net-value universal participation. It states the following.

Net-Value Universal Participation. Each individual should always
prefer to participate in the mechanism rather than to not participate—
that is, rather than to receive the alternative chosen had she valued each
good at precisely her fair share of its cost and to be taxed her fair share
of the cost of that good.

The difference between cost-sharing universal participation and net-value universal
participation is what the mechanism purports to do when an individual does not
participate. In the former, the mechanism selects the optimal decision supposing the
individual had a value of zero for each good and charges them their fair share of

(1986).
11See Section 4 for a complete discussion.
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its cost, while in the latter, the mechanism selects the optimal decision supposing
the individual had a value exactly equal to their fair share of the cost of each good,
and charges them their fair share of the cost of that good. In my view, the latter
is an unnatural desiderata. Both are generalizations of universal participation to
environments with implementation costs.12 The former retains the idea from universal
participation that the decision made if an individual does not participate is equivalent
to the decision made had they never existed. The latter does not.

Participation constraints can also be interpreted as principles of fairness. Individual
rationality is a particularly strong one. Reinterpreted as a fairness principle, it says
the following.

Individual Rationality. Each individual should never pay more than
her value for the chosen alternative.

Individual rationality states that it is fair for an individual to pay up to her total
value of what is produced and no more. This is arguably too demanding for public
good environments. Such environments are commonly characterized by a sense of
community, wherein each individual understands that everyone needs to chip in—
but not unreasonably so—for the greater good, even if that means paying more than
their value. I propose the following principle, which weakens individual rationality,
to formalize this view.

Fair Pricing Principle. Each individual should never pay more than
the maximum of her value for the chosen alternative and her fair share of
its cost.

The fair pricing principle states that 1) it is fair for an individual to pay up to her
total value of what is produced, and 2) it is fair for an individual to pay up to her fair
share of the cost of what is produced. This captures the sentiment that it is fair for
an individual to pay more than her fair share—as long as she is made better off by
the mechanism—and for an individual to be made worse off by the mechanism—as
long as she pays less than her fair share.

Both cost-sharing universal participation and the fair pricing principle are desirable
criteria for public good provision mechanisms. As we will see in the next section,
imposing one, the other, or both yields the same solution, which I call the cost-sharing
pivotal mechanism.

2.3 The cost-sharing pivotal mechanism

The cost-sharing pivotal mechanism is a generalization of the pivotal mechanism to
environments with implementation costs.

12With no implementation costs, all three are equivalent.
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The pivotal mechanism employs an efficient decision rule and charges
each individual the welfare loss imposed on others by taking her prefer-
ences into account for the decision.

In a pivotal mechanism, there is no payment related to the implementation costs of
the alternatives. Indeed, if no one is pivotal, no one pays. The cost-sharing pivotal
mechanism simply adds that, in addition to her pivotal payment, each individual also
pays her fair share of the cost of the alternative that would have been chosen without
her. If no one is pivotal, everyone pays their fair share of the chosen alternative.

The cost-sharing pivotal mechanism employs an efficient decision
rule and charges each individual her fair share of the cost of the decision
that would have been made without her plus the welfare loss imposed on
others by taking her preferences into account for the decision.

v′

v′−i

c′

c′i

α(0, θ−i) α(θ)
y

$
Cost-Sharing Pivotal Mechanism

Figure 1

In Figure 1, y is the quantity of the public good, v′ is the social marginal value of
the public good, v′−i is the social marginal value minus i’s, c′ is the marginal cost of
the public good, c′i is i’s marginal fair share of the cost, α(θ) is the efficient decision
(where v′ and c′ cross), and α(0, θ−i) is the efficient decision ignoring i’s preferences
(where v′−i and c′ cross). The cost-sharing pivotal mechanism implements α(θ) and
charges i her fair share of the cost of the decision that would have been made without
her (area in green) plus the welfare loss imposed on others by taking her preferences
into account for the decision (area in red). The pivotal mechanism charges i only the
latter (area in red).

The pivotal mechanism is one particular mechanism in the class of Groves mechanisms—
the class of all strategy-proof and efficient mechanisms. It is well known that no mech-
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anism is strategy-proof, efficient, and ex-post budget-balanced.13 However, some
mechanisms come closer to budget-balance than others. The cost-sharing pivotal
mechanism is another mechanism in the class of Groves mechanisms, but unlike the
pivotal mechanism, it comes arbitrarily close to ex-post budget-balance as the popu-
lation gets large.

Asymptotically Ex-Post Budget-Balanced. The probability of ex-
post budget-balance goes to one and the expected distance from ex-post
budget-balance per capita goes to zero as the population size goes to
infinity.

It is common in the literature on public good provision to restrict attention to mech-
anisms which never run a deficit. This is often simply termed feasibility. I argue that
in public good provision environments with large populations, this is an inappropri-
ate notion of feasibility. In such environments, surpluses and deficits must ultimately
trickle down to the citizens. What matters is that their incentives are preserved in
light of this fact. This inspires the forthcoming principle.

I propose that governments can finance small deficits and distribute small surpluses
through future changes to tax policy which are sufficiently inconsequential so as not
to affect the incentives of their citizens. That is, violations of budget-balance in
either direction are feasible, as long as they are “small”. One way to understand
this is that governments maintain a fund capable of absorbing small deficits and
surpluses. Over time, any accumulated surplus is repaid through tax cuts, while any
accumulated deficit is replenished through tax increases. If these adjustments are
small, it is reasonable to assume that individuals do not perceive them as part of the
mechanism. I call this the fuzzy taxation principle.14

Fuzzy Taxation Principle. Sufficiently small, indirect, and distant15

changes to tax policy are not perceived by individuals as part of their
transfer.

Under the fuzzy taxation principle, if the expected distance from ex-post budget-

13A mechanism is strategy-proof if it is a dominant strategy for each individual to report their
value truthfully, efficient if the decision maximizes total value minus implementation costs, and ex-
post budget-balanced if the revenue generated exactly offsets the implementation cost of the decision
made. The Groves mechanisms were first proposed by Groves (1973). Holmström (1979) showed
that a mechanism is strategy-proof and efficient if and only if it is a Groves mechanism (on a suitably
rich domain). Green and Laffont (1979) show that no mechanism is strategy-proof, efficient, and
ex-post budget-balanced (on a suitably rich domain).

14This is not to be confused with the taxation principle. The taxation principle states that a
strategy-proof mechanism must assign the same transfer to any two reports that result in the same
decision (Salanié, 2017, p. 18). The fuzzy taxation principle states that small changes to future tax
policy do not affect individual incentives.

15Changes are both distant in context (changes to tax policies not related to public good provision
mechanisms) and in time (changes occur sufficiently far into the future).
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balance per capita is sufficiently small, the mechanism is feasible. Note that this is a
not a formal criterion itself, but rather a rationale for using suitable formal criteria. In
particular, the fuzzy taxation principle is a rationale for the desirability of asymptotic
ex-post budget-balance and the irrelevance for feasibility of a public good provision
mechanism never running a budget deficit.

The cost-sharing pivotal mechanism satisfies strategy-proofness, efficiency, cost-sharing
universal participation, the fair pricing principle, and asymptotic ex-post budget-
balance (Theorems 1, 3, and 5), and it is effectively the unique mechanism which does
so (Theorems 4 and 6). In particular, Theorem 1 shows that a mechanism maximizes
ex-post revenue among all mechanisms which satisfy strategy-proofness, efficiency,
and cost-sharing universal participation if and only if it is a cost-sharing pivotal
mechanism. Theorem 3 shows that a mechanism maximizes ex-post revenue among
all mechanisms which satisfy strategy-proofness, efficiency, and the fair pricing prin-
ciple if and only if it is a cost-sharing pivotal mechanism. Theorem 4 shows that there
is no mechanism that satisfies strategy-proofness, efficiency, and at least one of cost-
sharing universal participation and the fair pricing principle which always gets closer
to ex-post budget-balance than a cost-sharing pivotal mechanism. Theorem 5 shows
that the cost-sharing pivotal mechanism is asymptotically ex-post budget-balanced.
Theorem 6 shows that any mechanism which satisfies strategy-proofness, efficiency,
asymptotic ex-post budget-balance, and at least one of cost-sharing universal partic-
ipation and the fair pricing principle, converges to a cost-sharing pivotal mechanism
as the population gets large.

2.4 The Clarke mechanism violates no-extortion

The Clarke mechanism is an alternative way to generalize the pivotal mechanism to
environments with implementation costs. It does so using the net value approach—
by embedding an individual’s fair share of the cost into her value for the alternatives
and applying the pivotal mechanism to the resulting environment with no implemen-
tation costs. In the same way we generalized universal participation to net-value
universal participation, we can generalize the pivotal mechanism to the “net-value
pivotal mechanism”. This is precisely the Clarke mechanism.

The Clarke mechanism employs an efficient decision rule and charges
each individual her fair share of the cost of what is actually chosen plus the
modified welfare loss—her share of the cost removed—imposed on others
by taking both her preferences and her share of the cost into account for
the decision.

This definition is clunky, and unavoidably so. The pivotal mechanism is simple and
elegant, but plugging net values into the pivotal mechanism and being explicit about
the result is much less so. As with net-value universal participation, to my knowledge
this is the first time the Clarke mechanism has been presented in this way.
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Cost-Sharing Pivot (when v′i = 0)
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α(θ) α̃(θ−i)
y

$
Clarke Mechanism (when v′i = 0)

Figure 2

How do the cost-sharing pivotal mechanism and the Clarke mechanism compare?
Figure 2 is similar to Figure 1, but adds c′−i, the marginal cost of the public good
minus i’s share of the cost, and α̃(θ−i), the efficient decision ignoring i’s preferences
and i’s share of the cost (where v′−i and c′−i cross).

16 The Clarke mechanism charges i
her fair share of the cost of what is actually chosen (area in green) plus the modified
welfare loss—her share of the cost removed—imposed on others by taking both her
preferences and her share of the cost into account for the decision (area in red).

As the right panel of Figure 2 shows, the Clarke mechanism incorporates a somewhat
unusual notion of what it means for an individual to be pivotal. Suppose i has zero
value for the public good. She is not pivotal—the efficient decision is the same with
or without her. The cost-sharing pivotal mechanism charges i her fair share of the
cost of what is produced (the green triangle). The Clarke mechanism charges i this
amount plus a modified conception of a “pivotal” payment (the red triangle). Ignoring

16Formally, α̃(θ−i) ∈ argmaxy∈Y [
∑

j ̸=i vj(y, θj)− cj(y)] and α(θ) ∈ argmaxy∈Y

∑
i∈I [vi(y, θi)]−

c(y). Note that while α̃(θ−i) > α(θ) in both cases above, it may also be that α̃(θ−i) ≤ α(θ).
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i’s preferences does not change the optimal decision (α(0, θ−i) = α(θ)), but ignoring
i’s share of the cost makes the good cheaper, and if the good is cheaper, the others
want to produce more of it (α̃(θ−i) > α(θ)). The red triangle captures this “loss” to
others—the welfare loss of not getting to produce more of the good if it were cheaper
by precisely i’s cost share. In the Clarke mechanism, an individual is “pivotal” if
the efficient decision changes when excluding her preferences and her share of the
cost.

This distinctive feature of the Clarke mechanism ultimately leads it to violate de-
sirable participation constraints and fairness principles.17 In particular, the Clarke
mechanism violates cost-sharing universal participation, the fair pricing principle,
and, notably, an especially weak criterion I call no-extortion. No-extortion applies
the fair pricing principle only to the case when none of the public good is produced.
It requires that when nothing is produced, no payments are collected. By contrast,
the cost-sharing pivotal mechanism satisfies all three.

No-Extortion. If nothing is produced, no payments are collected.

Example 1 (Clarke mechanism violates no-extortion). Let I = {i, j} and Y = {0, 1},
where 1 represents the construction of a park and 0 represents no construction. The
cost of the park is 4, and each individual’s fair share of the cost is 2. Individual i
values the park at 0, and individual j values the park at 3. The efficient decision is
not to construct the park (in which case i’s opponents’ total modified welfare—i’s
share of the cost removed—is 0) and the efficient decision ignoring i’s preferences
and i’s share of the cost is to construct the park (in which case i’s opponents’ total
modified welfare—i’s share of the cost removed—is 1), so i’s Clarke transfer is 1.

This is equivalent to embedding cost shares into individual values, removing all im-
plementation costs, and running a pivotal mechanism. Individual i values the park
net of her cost share at −2, and individual j values the park net of her cost share
at 1. Taking these as their values, the efficient decision is not to construct the park
(in which case i’s opponents’ total welfare is 0) and the efficient decision ignoring i’s
preferences is to construct the park (in which case i’s opponents’ total welfare is 1),
so i’s pivotal transfer is 1. □

One of the main selling points of the Clarke mechanism is that it never runs a budget
deficit. Nevertheless, the fuzzy taxation principle argues that what really matters
for the public good provision problem is that future budget-balancing policies do not
distort individual incentives, and what really matters for this is that the expected
distance from budget-balance is small. It is not particularly important that a mech-
anism always runs a budget surplus. Arguably, this is even a red herring. In fact,

17The pivotal mechanism satisfies universal participation, and so by construction, the Clarke
mechanism satisfies net-value universal participation—but, as discussed in Section 2.2, this condition
is arguably not relevant or appealing.
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it turns out that never running a budget deficit and fairness are fundamentally in
conflict with each other. No strategy-proof and efficient mechanism can satisfy both
no-deficit and no-extortion (Theorem 2).

3 Related Literature

In this section, I review some of the related literature on the public good provision
problem. Mailath and Postlewaite (1990) consider binary public good environments
and show that in any mechanism satisfying Bayesian incentive-compatibility, interim
individual-rationality, and ex-ante no-deficit, if the cost of the public good increases
linearly with population size or faster, the probability that the public good is produced
goes to zero as the population size goes to infinity—even when the probability that
it is efficient to produce the public good converges to one.18 In a similar vein, Al-
Najjar and Smorodinsky (2000) consider binary public good environments and show
that any mechanism satisfying Bayesian incentive-compatibility, interim individual-
rationality, and “no small contributors”19 cannot raise revenues that are unbounded
as the population size goes to infinity.

Xi and Xie (2021) consider binary public good environments and propose a class of
mechanisms which are strategyproof and ex-post individually rational. They show
that if the cost of provision grows slower than the square root of population size, these
mechanisms generate an ex-ante budget-surplus asymptotically and are asymptoti-
cally efficient, while if the cost grows faster than the square root of population size,
any mechanism which is strategypoof, ex-post individually-rational, and generates an
ex-ante budget-surplus asymptotically must have a provision probability converging
to zero. Kuzmics and Steg (2017) consider binary public good environments and show
that the welfare-maximizing mechanism among all strategy-proof, ex-post individu-
ally rational, and no-deficit mechanisms is a “split-the-cost” mechanism, in which
each player has a fixed cost share, the good is provided if and only if all players’
values exceed their own cost share, and each player pays her cost share if the good
is provided and zero otherwise. Notice that this is a special case of Mailath and
Postlewaite (1990), and hence if the cost of the public good increases linearly with
population size or faster, the probability that the public good is produced in such a
mechanism goes to zero as the population size goes to infinity.

Serizawa (1999) considers continuous public good environments with monotonic and
quasi-concave preferences and characterizes the class of strategy-proof and ex-post
budget-balanced mechanisms which are also symmetric (minimax rule), anonymous
(q-rule), or symmetric and ex-post individually-rational (minimum demand rule).

18See also Hellwig (2003).
19This condition requires that, if an individual’s expected transfer is less than some threshold,

then the individual’s expected transfer is zero.
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Laffont and Maskin (1982) show that in binary decision problems with no implemen-
tation costs, if the population distribution of values is symmetric around zero, the
welfare-maximizing budget-balanced mechanism has a sink agent—an agent who’s
preferences are ignored and who receives the transfers from the other agents—and
a decision rule which is efficient among the remaining agents. Nath and Sandholm
(2019) consider finite decision problems with three or more alternatives and no imple-
mentation costs and bound the asymptotic inefficiency of strategy-proof mechanisms
using strategy-proof and ex-post budget-balanced mechanisms with a sink agent and
a decision rule which is efficient among the non-sink agents. Moreover, they show that
any strategy-proof and ex-post budget-balanced mechanism has at least one a sink
agent. Drexl and Kleiner (2018) consider binary decision problems with no implemen-
tation costs and show that the welfare-maximizing mechanism among all anonymous,
strategy-proof, universal participation, and no-deficit mechanisms is qualified major-
ity voting with threshold k, where k is the ceiling of −nE(θi | θi≤0)

E(θi | θi≥0)−E(θi | θi≤0)
and θi is i’s

value for the project. Note that the use of anonymous mechanisms rules out having
a sink agent.

Rob (1982) considers binary decision environments with no implementation costs and
shows that the pivotal mechanism is asymptotically efficient—i.e., the probability that
any individual has a positive transfer goes to zero and the expected per capita transfer
goes to zero as the population size goes to infinity.20 As discussed in Sections 2.1
and 8, this immediately implies an analogous result for the Clarke mechanism in
a binary public good environment with implementation costs (using the net value
approach to embed costs into values) with equal cost shares and a cost of the public
good which increases linearly with population size. By contrast, I show that the
cost-sharing pivotal mechanism is asymptotically ex-post budget-balanced in a finite
public good environment with arbitrary sequences of costs and arbitrary sequences of
cost shares. See Sections 4 and 8 for a discussion of the importance of this additional
robustness.

4 Model

Implementation costs are often not explicitly modeled in mechanism design.21 This
paper is built on insights obtained by doing just that. A minimal mechanism design
environment with implementation costs is given by

E = (I,X,Θ, {ui}i∈I , c),

where I is a set of n individuals, X = Y × Rn is a set of outcomes consisting of a
social alternative y ∈ Y and an n-vector of monetary transfers (where ti ∈ R is the

20See also Green, Kohlberg and Laffont (1976), Green and Laffont (1979), and Mitsui (1983).
21See Sections 2.1 and 6 for a discussion.
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amount i is asked to pay), Θ = Θi × . . . × Θn is a type space, ui : X × Θ → R
specifies i’s payoff for each outcome given a type profile θ, and c : Y → R specifies
the implementation cost of each alternative.

In this paper, we will consider a mechanism design environment with implementation
costs and fair cost shares, given by

E = (I,X,Θ× Z, {ui}i∈I , c, ϕ, F ).

As before, Θ = Θ1 × . . .×Θn is a type space and ui : X ×Θ → R specifies i’s payoff
for each outcome given a type profile θ. Meanwhile, Z = Z1 × . . . × Zn is a space
of auxiliary traits which are not directly payoff relevant—i.e., not payoff relevant
conditional on θ. ϕ : Y ×Z → Rn is a mapping from Z into what society has deemed
a fair share of the implementation cost of each alternative y for each individual i.
Hence,

∑
i∈I ϕi(y, z) = c(y) for all y and z. It is often convenient to suppress the

dependence on z and denote ci(y) ≡ ϕi(y, z). F ∈ ∆(Θ × Z) is a prior distribution
over Θ× Z. Let E be the set of all such environments.22

The notion of exogenous cost shares is standard in the literature.23 That said, ex-
plicitly modeling them as an arbitrary function of auxiliary traits is new. While this
is unnecessary for the non-asymptotic results in Sections 5, 6, and 7 (along with
the prior over Θ × Z), doing so is integral for the asymptotic results in Section 8.
In particular, assuming equal cost shares (which is necessary when using standard
methods) assumes away several challenges which are true in practice—namely, that
we may want richer individuals to have higher cost shares and that richer individuals
may have a higher willingness to pay on average.

I now discuss the interpretation of these fair shares, including 1) why ϕ does not
depend on θ and 2) if Z ought to include traits which are private information. Such
a discussion is, to the best of my knowledge, new.

In my view, fairness in public good provision environments ought to capture a sense of
community, wherein each individual has, and understands they have, a responsibility
to play their part—regardless of their value for the good itself. The most elementary
way to capture this responsibility is for a society to agree in advance that it is fair to
ask any individual to contribute their equal share of the cost of a public good—i.e.,
the cost of the public good divided by the population size. Intuitively, if a public
park is built in my city, it is fair for the government to ask me to pay an equal share
of its cost, regardless of how much I value the park.

Extending this logic, a more sophisticated way to capture this responsibility is for a
society to agree in advance that it is fair to ask any individual to contribute an amount

22I will also use E to denote the expectation operator. The intended meaning should be clear from
context.

23See Green and Laffont (1979, p. 29), Moulin (1988, p. 205), Varian (1992, p. 426), and Mas-
Colell, Whinston and Green (1995, p. 877).
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which may depend on deliberately selected traits of that and other individuals which
are deemed relevant to fairness. Let’s call this amount an individual’s fair share.
Intuitively, if a public park is built, it is fair for the government to ask me to pay
an amount which may be higher the closer I live to the park and the richer I am,
regardless of how much I value the park. Importantly, these traits should not include
my value for the public good. The sense of communal responsibility surrounding the
provision of public goods is precisely that I may be asked to pay an amount that does
not depend on my (or others’) value for the good itself.24

Z is precisely this set of auxiliary traits. The question then remains: can and should
Z include traits which are private information to the individuals? The answer is no.
The taxation principle states that a strategy-proof mechanism must assign the same
transfer to any two reports that result in the same decision (Salanié, 2017, p. 18).
Since we seek an efficient decision rule and strategy-proof incentives, and zi does not
affect i’s payoff conditional on θi, this implies that we cannot tailor i’s transfer to i’s
reported zi and hence cannot elicit zi.

This point effectively ends the discussion, but it is nonetheless worth pointing out a
second consideration. The selection of traits which determine each individual’s fair
share is a sensitive matter and ought to be done thoughtfully by an interdisciplinary
team of researchers, policy makers, and ordinary citizens. A good heuristic here seems
to be that selected traits should be directly observable by the government (rather than
reported through an incentive mechanism). The two traits used as primary examples
in this paper, income and distance from the public good, fit this provision. See
Appendix A for explicit examples of how a government might construct fair shares
from observable traits—i.e., explicit examples of Z and ϕ.

Hence, a (direct revelation) mechanism f : Θ → X is a mapping from type profiles
to outcomes. Restricting attention to direct revelation mechanisms is without loss
of generality by the revelation principle for dominant strategies (Gibbard, 1973). In
these environments, f can be represented by a pair f = (α, τ), where α : Θ → Y is a
decision rule and τ : Θ → Rn is a transfer rule. Each individual i reports their type
θi to the mechanism. The mechanism then implements social alternative α(θ) at cost
c(α(θ)) and collects transfers τi(θ) from each i.

5 Convex Environments

Let EX ⊂ E be the set of environments with quasilinear preferences, private and con-
vex values, and a fully indifferent type.25 In particular, EX is the set of environments

24The fair pricing principle, discussed in Sections 2.2 and 7, uses these fair shares to construct
a fairness criterion for public good provision. It states that it is fair for the government to ask an
individual to pay up to the maximum of their value for the good and their fair share of its cost.

25X stands for “convex”.
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where each of the following are true. For each i and θ, ui(x, θ) = vi(y, θi) − ti for
some vi : Y × Θi → R. For all i, λ ∈ [0, 1], and θ′i, θ

′′
i ∈ Θi, there exists θi ∈ Θi such

that for all y, vi(y, θi) = λvi(y, θ
′
i) + (1 − λ)vi(y, θ

′′
i ). For all i, there exists a type,

denoted 0 ∈ Θi, such that vi(y, 0) = 0 for all y. For every θ, there exists an efficient
social alternative, i.e., argmaxy∈Y

∑
i∈I vi(y, θi)− c(y) exists.

A mechanism is strategy-proof if it is a dominant strategy for each individual i to
report her type θi truthfully to the mechanism.26

Definition 1. A mechanism f = (α, τ) is strategy-proof if for all i, θ′i, θ,

vi(α(θ), θi)− τi(θ) ≥ vi(α(θ
′
i, θ−i), θi)− τi(θ

′
i, θ−i).

Let A∗(θ) = argmax y∈Y
∑

i∈I vi(y, θi) − c(y) be the set of efficient decisions27 given
θ.

Definition 2. A decision rule α : Θ → Y is efficient if for all θ, α(θ) ∈ A∗(θ). A
mechanism f = (α, τ) is efficient if α is efficient.

For any convex environment, the class of Groves mechanisms fully characterizes the
set of strategy-proof and efficient mechanisms (Holmström, 1979).

Definition 3. A mechanism f = (α, τ) is a Groves mechanism if the decision rule is
efficient and the transfer rule satisfies

τi(θ) = gi(θ−i)−
[(∑

j ̸=i

vj(α(θ), θj)
)
− c(α(θ))

]
for any function gi : Θ−i → R.

The term in square brackets is the welfare attained by i’s opponents, and gi is any
function that does not depend on i’s report (and hence does not affect her incen-
tives). By subsidizing i an amount exactly equal to the welfare of her opponents, the
planners’ objective and i’s objective become one and the same—to maximize social
welfare.

Theorem (Holmström, 1979). Given any environment EX ∈ EX , a mechanism is
strategy-proof and efficient if and only if it is a Groves mechanism.

26If a mechanism fails to be strategy-proof (or another suitable form of incentive-compatibility),
we cannot count on the individuals to report truthfully and all the other properties we discuss, which
rely on this, will be immaterial.

27Given quasilinear preferences on X = Y × Rn, for any θ, the set of efficient outcomes consists
of any social alternative y ∈ A∗(θ) and any budget-balanced transfers t ∈ Rn where

∑
i ti =

c(y). Regardless of whether a mechanism achieves budget-balance, it is common to refer to these
alternatives as the efficient decisions and mechanisms which select these alternatives as efficient
mechanisms.
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One of the most celebrated mechanisms within the Groves class is the pivotal mecha-
nism. Before defining it formally, I clarify an important point. The pivotal mechanism
is generally defined in environments without implementation costs. In such environ-
ments, it is defined by α(θ) ∈ argmaxy∈Y

∑
i∈I vi(y, θi) and τi(θ) =

∑
j ̸=i vj(α(0, θ−i), θj)−∑

j ̸=i vj(α(θ), θj) for all i. This fits the natural language definition from Section 2.3:
the pivotal mechanism employs an efficient decision rule and charges each individual
the welfare loss imposed on others by taking her preferences into account for the
decision.

It is standard to additionally call the mechanism generated by plugging net values
into a pivotal mechanism (the net value approach to modeling implementation costs)
a pivotal mechanism.28 However, this no longer fits the natural language definition
above. Instead, such a mechanism: employs an efficient decision rule and charges
each individual her fair share of the cost of what is actually chosen plus the modified
welfare loss—her share of the cost removed—imposed on others by taking both her
preferences and her share of the cost into account for the decision. This is precisely
the mechanism proposed by Clarke (1971), and as such I refer to it as the Clarke
mechanism, which I define formally in Section 6.

What, then, is a pivotal mechanism in environments with implementation costs? Or
more generally, how does any definition in environments without implementation costs
apply to environments with them? In my view, the most natural way to incorporate
implementation costs into an environment without them is to introduce an additional
player 0 who’s commonly known29 preference reflects the implementation cost of each
alternative—i.e., v0(y, θ0) = −c(y) for all y. In the case of the pivotal mechanism,
including implementation costs then simply updates the efficient decision rule to
be α(θ) ∈ argmaxy∈Y

∑
i∈I vi(y, θi) − c(y), leaving everything else the same. This

preserves the original natural language definition of the mechanism and gives rise to
the following formal definition.

Definition 4. A mechanism f = (α, τ) is a pivotal mechanism if the decision rule is
efficient and the transfer rule satisfies

τi(θ) =
[
max
y∈Y

(∑
j ̸=i

vj(y, θj)
)
− c(y)

]
−
[(∑

j ̸=i

vj(α(θ), θj)
)
− c(α(θ))

]
=

[(∑
j ̸=i

vj(α(0, θ−i), θj)
)
− c(α(0, θ−i))

]
−
[(∑

j ̸=i

vj(α(θ), θj)
)
− c(α(θ))

]
.

An individual is pivotal if the efficient decision changes when taking her preferences
into account.

28See e.g., Mas-Colell, Whinston and Green (1995, p. 878). Note also that the terms pivotal
mechanism and Clarke mechanism are used interchangeably in the literature.

29Because this player has no private information, there is nothing to incentivize them to report
and their transfer can just be zero.
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Definition 5. Given a mechanism f = (α, τ) and type profile θ ∈ Θ, an individual i
is pivotal if α(0, θ−i) ̸= α(θ).

The pivotal mechanism earns its name from the fact that it only charges individuals
who are pivotal. It charges them precisely the welfare loss they impose on others.
In particular, it charges i the difference between the maximum welfare achieved by
the rest of the population when not taking her preferences into account and the
maximum welfare achieved by the rest of the population when taking her preferences
into account.

Universal participation captures the idea that a mechanism should incentivize each
individual to participate in the mechanism rather than to not participate, receive the
alternative chosen without her, and pay nothing. This is an appropriate participation
constraint in public good environments in which there is no governing body with the
power to tax (or no implementation costs).

Definition 6. A mechanism f = (α, τ) satisfies universal participation if for all θ
and i,

vi(α(θ), θi)− τi(θ) ≥ vi(α(0, θ−i), θi).

Fryxell (2023) shows that the pivotal mechanism can be characterized as the revenue-
maximizing Groves mechanism subject to universal participation.

Theorem (Fryxell, 2023). Given any environment EX ∈ EX , a mechanism maximizes
ex-post revenue among all mechanisms which satisfy strategy-proofness, efficiency,
and universal participation if and only if it is a pivotal mechanism.

I propose a new participation constraint, which I call cost-sharing universal partic-
ipation, capturing the idea that a mechanism should incentivize each individual to
participate in the mechanism rather than to not participate, receive the alternative
chosen without her, and be taxed her fair share of its cost. This is an appropriate
participation constraint in public good environments in which there is a governing
body with the power to tax.

Definition 7. A mechanism f = (α, τ) satisfies cost-sharing universal participation
(CS-UP) if for all θ and i,

vi(α(θ), θi)− τi(θ) ≥ vi(α(0, θ−i), θi)− ci(α(0, θ−i)).

The main contribution of this paper is to propose the following mechanism as the
natural generalization of the pivotal mechanism to environments with implementation
costs and as a solution to the public good provision problem for large populations as
defined in Section 1.
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Definition 8. A mechanism f = (α, τ) is a cost-sharing pivotal mechanism (CSP) if
the decision rule is efficient and the transfer rule satisfies

τi(θ) =
[
max
y∈Y

(∑
j ̸=i

vj(y, θj)
)
− c(y)

]
−
[(∑

j ̸=i

vj(α(θ), θj)
)
− c(α(θ))

]
+ ci(α(0, θ−i))

=
[(∑

j ̸=i

vj(α(0, θ−i), θj)
)
− c(α(0, θ−i))

]
−

[(∑
j ̸=i

vj(α(θ), θj)
)
− c(α(θ))

]
+ ci(α(0, θ−i)).

The cost-sharing pivotal mechanism simply adds ci(α(0, θ−i))—the cost of what would
have been chosen without i—to i’s transfer in the pivotal mechanism. The pivotal
mechanism charges everyone zero and additionally charges those who are pivotal the
welfare loss they impose on others. The cost-sharing pivotal mechanism, on the other
hand, charges everyone their fair share of the cost of what would have been chosen
without them and additionally charges those who are pivotal the welfare loss they
impose on others. Notice that if no individual is pivotal, the cost-sharing pivotal
mechanism is ex-post budget-balanced (EPBB)—i.e.,

∑n
i=1 τi(θ) = c(α(θ)).

While the pivotal mechanism can be characterized as the revenue-maximizing Groves
mechanism subject to universal participation, the cost-sharing pivotal mechanism can
be characterized as the revenue-maximizing Groves mechanism subject to cost-sharing
universal participation.

Theorem 1. Given any environment EX ∈ EX , a mechanism maximizes ex-post
revenue among all mechanisms which satisfy strategy-proofness, efficiency, and cost-
sharing universal participation if and only if it is a cost-sharing pivotal mechanism.

Proof. Given any environment EX ∈ EX , a mechanism f is strategy-proof and efficient if
and only if it is a Groves mechanism by Holmström (1979). Let f = (α, τ) be a Groves
mechanism with τi(θ) = gi(θ−i) − [

∑
j ̸=i vj(α(θ), θj) − c(α(θ))] for some gi : Θ−i → R.

We would like to construct gi(θ−i) to maximize revenue subject to cost-sharing universal
participation. In particular,

gi(θ−i) = inf
θi∈Θi

vi(α(θ), θi) +
∑
j ̸=i

vj(α(θ), θj)− c(α(θ))− vi(α(0, θ−i), θi) + ci(α(0, θ−i)).

Plugging θi = 0 into the objective function, we have
∑

j ̸=i vj(α(0, θ−i), θj)− c(α(0, θ−i)) +
ci(α(0, θ−i)), which is indeed the minimum since by definition of α, for all θi,

vi(α(θ), θi)+
∑
j ̸=i

vj(α(θ), θj)−c(α(θ)) ≥ vi(α(0, θ−i), θi)+
∑
j ̸=i

vj(α(0, θ−i), θj)−c(α(0, θ−i)),

which holds if and only if for all θi,

vi(α(θ), θi) +
∑
j ̸=i

vj(α(θ), θj)− c(α(θ))− vi(α(0, θ−i), θi) + ci(α(0, θ−i))

≥
∑
j ̸=i

vj(α(0, θ−i), θj)− c(α(0, θ−i)) + ci(α(0, θ−i)).
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Hence, gi(θ−i) = [
∑

j ̸=i vj(α(0, θ−i), θj)− c(α(0, θ−i))] + ci(α(0, θ−i)) as desired. ■

6 Convex Environments with Net Values

The standard approach in the literature to modeling implementation costs is to embed
them into the individuals’ values. Instead of using an individual i’s value vi for some
alternative y, say constructing a park, we use instead an individual i’s net value ṽi
for the construction of the park and paying a tax equal to her fair share of its cost
ci(y). In particular, if i has type θi, her net value for y, including a tax of ci(y), is
ṽi(y, θi) = vi(y, θi)− ci(y), and her net transfer—the additional payment beyond the
tax ci(α(θ))—is τ̃i(θ) = τi(θ)− ci(α(θ)).

Mechanically, this means that when facing an environment with implementation costs,
we may simply specify the taxes for each alternative, ask individuals to report their
values net of this tax, and utilize these values as if they were the individuals’ actual
values and there were no implementation costs. I call this the net value approach.
Indeed, it is because of this approach that it is common in the literature not to model
implementation costs explicitly.30

Using net values, we may rewrite the set of efficient decisions by

A∗(θ) = argmax
y∈Y

∑
i∈I

(
vi(y, θi)

)
− c(y) = argmax

y∈Y

∑
i∈I

ṽi(y, θi).

This technique—interpreting reported values as net values and disregarding imple-
mentation costs; or equivalently, replacing vi with ṽi and setting ci(y) = c(y) = 0 for
all y and i—produces equivalent statements for several definitions including strategy-
proofness, efficiency, individual rationality, and the Groves mechanisms. Importantly,
it does not produce equivalent statements for universal participation and the pivotal
mechanism.

This is because the “zero” value changes meaning when we replace values with net
values. Recall that 0 ∈ Θi is a type for which vi(y, 0) = 0 for all y—i.e., i’s value
for each alternative is zero. Define 0̃ ∈ Θi to be a type for which ṽi(y, 0̃) = 0 for all
y—i.e., i’s net value for each alternative is zero. Given type 0̃, i’s value for y is then
vi(y, 0̃) = ṽi(y, 0̃) + ci(y) = ci(y). In other words, if i has a net value for y of zero,
she in fact has a positive value for y itself—a value exactly equal to her fair share of
its cost.

Plugging net values into universal participation produces the following distinct con-
straint, which I call net-value universal participation.

30See Section 2.1 for further discussion.
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Definition 9. A mechanism f = (α, τ) satisfies net-value universal participation if
for all θ and i,

ṽi(α(θ), θi)− τ̃i(θ) ≥ ṽi(α(0̃, θ−i), θi),

or equivalently,

vi(α(θ), θi))− τi(θ)) ≥ vi(α(0̃, θ−i), θi)− ci(α(0̃, θ−i)).

The first line makes clear that net-value universal participation is simply universal
participation with net values. The second line expresses this condition in terms of
actual values vi and transfers τi, making clear what it states about the underlying
fundamentals: each individual should always prefer to participate in the mechanism
rather than to not participate—that is, rather than to receive the alternative chosen
had she valued each good at precisely her fair share of its cost and to be taxed her
fair share of the cost of that good.

Similarly, plugging net values into and removing implementation costs from the piv-
otal mechanism produces the following distinct mechanism, known as the Clarke
mechanism.

Definition 10. A mechanism f = (α, τ) is a Clarke mechanism if the decision rule
is efficient and the net transfer rule satisfies

τ̃i(θ) =
[
max
y∈Y

(∑
j ̸=i

ṽj(y, θj)
)]

−
[(∑

j ̸=i

ṽj(α(θ), θj)
)]

=
[∑

j ̸=i

ṽj(α(0̃, θ−i), θj)
]
−
[∑

j ̸=i

ṽj(α(θ), θj)
]
,

or equivalently, if the transfer rule satisfies

τi(θ) =
[
max
y∈Y

(∑
j ̸=i

vj(y, θj)− cj(y)
)]

−
[(∑

j ̸=i

vj(α(θ), θj)− cj(α(θ))
)]

+ ci(α(θ))

=
[(∑

j ̸=i

vj(α(0̃, θ−i), θj)− cj(α(0̃, θ−i))
)]

−
[(∑

j ̸=i

vj(α(θ), θj)− cj(α(θ))
)]

+ ci(α(θ)).

As before, the first equation makes clear that the Clarke mechanism is simply a piv-
otal mechanism with net values and no implementation costs. The second equation
expresses actual transfers τi in terms of actual values vi. The Clarke mechanism is
one way, and until now the only proposed way, to generalize the pivotal mechanism
to environments with implementation costs. The cost-sharing pivotal mechanism,
defined in Section 5, is another way. The Clarke mechanism inserts net values into
and removes implementation costs from i’s transfer in the pivotal mechanism. The
cost-sharing pivotal mechanism adds ci(α(0, θ−i))—the cost of what would have been
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chosen without i—to i’s transfer in the pivotal mechanism. These are two distinct
mechanisms with markedly different interpretations and properties satisfied. See Sec-
tions 2.3 and 2.4 and, in particular, Figures 1 and 2 for a detailed comparison of the
two.

Reinterpreting the result from Fryxell (2023) in Section 5 with net values immediately
implies that the Clarke mechanism can be characterized as the revenue-maximizing
Groves mechanism subject to net-value universal participation.

Corollary (Fryxell, 2023). Given any environment EX ∈ EX , a mechanism max-
imizes ex-post revenue among all mechanisms which satisfy strategy-proofness, effi-
ciency, and net-value universal participation if and only if it is a Clarke mechanism.

Although cost-sharing universal participation neither implies nor is implied by net-
value universal participation, the Clarke mechanism always raises more revenue than
the cost-sharing pivotal mechanism.

Proposition 1. Given any environment EX ∈ EX , the transfer for each individual i
in a Clarke mechanism is no less than that in a cost-sharing pivotal mechanism.

Proof. τClarke
i (θ) ≥ τCSP

i (θ) if and only if[
max
y∈Y

(∑
j ̸=i

vj(y, θj)
)
−
(
c(y)−ci(y)

)]
≥

[(∑
j ̸=i

vj(α(0, θ−i), θj)
)
−c(α(0, θ−i))

]
+ci(α(0, θ−i)).

■

In fact, one of the main selling points of the Clarke mechanism is that it never runs
a budget deficit.

Definition 11. A mechanism f = (α, τ) satisfies no-deficit (ND) if it never runs a
budget deficit—i.e.,

∑n
i=1 τi(θ) ≥ c(α(θ)) for all θ.

Be that as it may, the fuzzy taxation principle argues that satisfying no-deficit is a red
herring, and what we should really care about is that deviations in either direction
from budget-balance are small (see Section 2.4). Moreover, Theorem 2 shows that
no-deficit cannot be satisfied alongside a weak fairness criterion I call no-extortion.
No-extortion is a minimal standard of fairness in public good environments. It says
that if nothing is produced, no payments are collected.

Definition 12. A mechanism f = (α, τ) satisfies no-extortion (NE) if when nothing
is produced, no payments are collected. That is, α(θ) = 0 implies τi(θ) ≤ 0.31

31One might think it is perfectly reasonable to charge a payment to an individual who sways the
decision towards something they prefer. With negative values, it is possible to sway the decision
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The Clarke mechanism violates no-extortion (see Example 1). The following definition
and proposition are useful to prove Theorem 2. A potential project-starter is an
individual for whom the project may or may not be produced, depending on her
report.

Definition 13. A player i is a potential project-starter for θ−i if α(0, θ−i) = 0 and
there exists θi ∈ Θi such that α(θ) > 0.

A mechanism satisfying strategy-proofness, efficiency, and no-extortion can charge
potential project-starters no more than their pivotal payment.

Proposition 2. Given any environment EX ∈ EX , a mechanism satisfies strategy-
proofness, efficiency, and no-extortion if and only if it charges no more than a pivotal
payment for potential project-starters. That is, if player i is a potential project-starter
for θ−i, then

τi(θ) ≤
[(∑

j ̸=i

vj(α(0, θ−i), θj)
)
− c(α(0, θ−i))

]
−
[(∑

j ̸=i

vj(α(θ), θj)
)
− c(α(θ))

]
.

Proof. Given any environment EX ∈ EX , a mechanism f is strategy-proof and efficient if
and only if it is a Groves mechanism by Holmström (1979). Let f = (α, τ) be a Groves
mechanism with τi(θ) = [

∑
j ̸=i vj(α(0, θ−i), θj)−c(α(0, θ−i))]−[

∑
j ̸=i vj(α(θ), θj)−c(α(θ))]+

hi(θ−i) for some hi : Θ−i → R. If i is a potential project-starter for θ−i, then no-extortion
requires

τi(0, θ−i) =
[(∑

j ̸=i

vj(0, θj)
)
− c(0)

]
−
[(∑

j ̸=i

vj(0, θj)
)
− c(0)

]
+ hi(θ−i) = hi(θ−i) ≤ 0.

■

A strategy-proof and efficient mechanism cannot satisfy both no-extortion and no-
deficit. The Clarke mechanism satisfies strategy-proofness, efficiency, and no-deficit
and hence violates no-extortion.

Theorem 2. There does not exist any mechanism that satisfies strategy-proofness,
efficiency, no-extortion, and no-deficit in all binary public good environments32 (and
hence also in all finite, continuous, and convex public good environments).

from constructing the good to not. One could then define no-extortion as follows. A mechanism
satisfies no-extortion if, for any individual i with type θi such that vi(y, θi) ≥ vi(0, θi) for all y,
α(θ) = 0 implies τi(θ) ≤ 0. In this paper, I primarily consider the case of non-negative values.
Hence, for simplicity and elegance I define no-extortion without this prerequisite. It is immediate
that all results in this paper hold identically for either definition.

32A binary public good environment has two alternatives (the public good and the status quo)
and non-negative values for the public good. In particular, it is a finite public good environment, as
in Section 8, with K = 1.
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Proof. Consider a binary public good environment with three players each with value 3 for
the public good which costs 8. The efficient decision is to produce the public good. Each
player is a potential project-starter, so in order to satisfy no-extortion their transfer must
be no larger than their pivotal payment by Proposition 2, which is 2. Hence, total revenue
can be no more than 6, violating no-deficit. ■

7 Continuous Public Good Environments

Let EC ⊂ EX be the set of environments with unidimensional social alternatives;
quasilinear preferences; private, absolutely continuous, non-decreasing, and convex
values; and a fully indifferent type. In particular, EC is the set of environments
in EX where each of the following are true. Social alternatives are unidimensional:
Y = R+. For each i and θi, vi is absolutely continuous and non-decreasing in y with
vi(0, θi) normalized to 0 for all θi.

33 Costs c and fair shares ci for each i are absolutely
continuous and non-decreasing with c(0) normalized to 0.34

Individual rationality is a common desiderata in the mechanism design literature.

Definition 14. A mechanism f = (α, τ) is individually-rational if for all i, θ,

τi(θ) ≤ vi(α(θ), θi) =

∫ α(θ)

0

v′i(y, θi) dy.

Generally, individual rationality is interpreted as a participation constraint, in which
case it can be understood to say that an individual should always prefer to participate
in the mechanism rather than to not participate, consume nothing, and pay nothing.
This is not appropriate in public good environments (see Sections 2.2 and 5). We
may also interpret individual rationality as a fairness principle, in which case it can
be understood to say that an individual’s payment should never be larger than her
value for the chosen alternative. As discussed in Section 2.2, this notion of fairness is
too demanding for public good environments. In these environments, fairness should
capture a sense of community, wherein each individual has, and understands they
have, a responsibility to play their part. The fair pricing principle captures this
sentiment.

Definition 15. A mechanism f = (α, τ) satisfies the fair pricing principle (FPP) if
for all i, θ,

τi(θ) ≤ max
{
vi(α(θ), θi), ci(α(θ))

}
= max

{∫ α(θ)

0

v′i(y, θi) dy,

∫ α(θ)

0

c′i(y) dy
}
.

33Hence, vi(y, θi) =
∫ y

0
v′i(z, θi) dz for all i.

34Hence, c(y) =
∫ y

0
c′(z) dz and ci(y) =

∫ y

0
c′i(z) dz for all i.

26



The fair pricing principle says that an individual’s payment should not be larger than
the maximum of her value for the chosen alternative and her fair share of its cost.
In other words, it is fair to ask an individual to pay up to her fair share of the cost
of what is produced, and it is also fair to ask an individual to pay more as long as
this amount is less than her value for what is produced. The fair pricing principle
per unit captures the same sentiment unit by unit.

Definition 16. A mechanism f = (α, τ) satisfies the fair pricing principle per unit
(FPP per unit) if for all i, θ,

τi(θ) ≤
∫ α(θ)

0

max
{
v′i(y, θi), c

′
i(y)

}
dy.

The fair pricing principle per unit says that for each unit of the public good, it is fair
for an individual to pay up to the maximum of her marginal value for that unit and
her fair share of its marginal cost. Since the maximum is taken unit by unit, this is a
strictly weaker condition than the fair pricing principle—allowing, for instance, that
an individual be taxed her fair share for the first marginal unit of the good and then
be taxed her marginal value for the second, which may total more than the maximum
of her fair share and her value for both units of the good (see Example 3).

It is clear that individual rationality implies the fair pricing principle which implies
the fair pricing principle per unit which implies no-extortion. One may wonder if
cost-sharing universal participation also implies no-extortion. The answer is yes, but
with a minor qualification. This qualification turns out to be important for fairness
in general. I discuss it now.

In a continuous public good environment, it is intuitive that if i’s marginal value
increases everywhere, all else fixed, an efficient decision rule would never select a
strictly smaller amount of the public good. This intuition is nearly correct, but for a
technical reason not entirely so. It is true if the set of efficient decisions is always a
singleton, but it is not true in general. What is true is that increasing an individual’s
marginal value increases the set of efficient decisions in the strong set order.35

Proposition 3. Given any environment EC ∈ EC, if v
′
i(y, θ̂i) ≥ v′i(y, θi) for all i, y,

and θi, then A∗(θ̂) ≥ A∗(θ) in the strong set order.

Proof. For any θ, y∗ ∈ A∗(θ) if and only if for any y′ ≤ y∗ ≤ y′′,∫ y∗

y′

∑
i∈I

v′i(y, θi)− c′(y) dy ≥ 0 ≥
∫ y′′

y∗

∑
i∈I

v′i(y, θi)− c′(y) dy.

35For any A,B ⊆ R, A ≤ B in the strong set order if for any a ∈ A and b ∈ B, min{a, b} ∈ A and
max{a, b} ∈ B. See Milgrom and Shannon (1994).
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That is, y∗ is efficient if and only if moving from any y′ ≤ y∗ to y∗ weakly increases welfare
and moving from y∗ to any y′′ ≥ y∗ weakly decreases welfare.

Suppose v′i(y, θ̂i) ≥ v′i(y, θi) for all i, y, and θi, y
∗ ∈ A∗(θ), ŷ∗ ∈ A∗(θ̂), and ŷ∗ ≤ y∗. Then∫ y∗

ŷ∗

∑
i∈I

v′i(y, θi)− c′(y) dy ≥ 0 ≥
∫ y∗

ŷ∗

∑
i∈I

v′i(y, θ̂i)− c′(y) dy ≥
∫ y∗

ŷ∗

∑
i∈I

v′i(y, θi)− c′(y) dy

where the first inequality follows since y∗ ∈ A∗(θ), the second since ŷ∗ ∈ A∗(θ̂), and the
third since v′i(y, θ̂i) ≥ v′i(y, θi) for all i, y, and θi. Hence, y

∗ ∈ A∗(θ̂) and ŷ∗ ∈ A∗(θ). ■

Because an efficient decision rule can select any efficient decision, nothing prevents
it from selecting a strictly smaller amount of the public good when marginal values
increase, provided this remains in the set of efficient decisions. A trivial example is
if an increase in i’s marginal value doesn’t change the set of efficient decisions. In
such a case, an efficient decision rule may very well select a strictly smaller alter-
native. It turns out that such decision rules will cause problems for fairness, in the
sense of violating no-extortion or any of the stronger notions above (see Example 2).
This motivates the following definition, which aligns efficient decision rules with our
intuition.

Definition 17. A decision rule α : Θ → R+ is monotone if v′i(y, θ̂i) ≥ v′i(y, θi) for all
y ≥ 0 and i ∈ I implies α(θ̂) ≥ α(θ).

A decision rule is monotone if increasing any individual’s value function pointwise
never decreases the decision. With a non-monotone decision rule, the cost-sharing
pivotal mechanism violates no-extortion.

Example 2 (With a non-monotone decision rule, the CSP violates NE.). Let I =
{i, j} and Y = {0, 1, 2}, representing no park, a small park, and a large park, respec-
tively. The cost of the small park is 10 and the cost of the large park is 20, and each
individual’s fair share is 5 for the small park and 10 for the large park. Individual i
values the small park at 0 and the large park at 2, and individual j values the small
park at 10 and the large park at 15. Given this, the set of efficient decisions is {0, 1}.
Both no park and the small park result in a total welfare of zero, which is optimal.
Suppose α selects 0—no park.

Ignoring i’s preferences (had she had zero value for both the small and large park), the
set of efficient decisions remains unchanged. Suppose α is non-monotonic and for this
type profile selects 1—the small park. The CSP charges i the welfare loss she imposes
on others by having her preferences taken into account (0, since i’s opponents’ total
welfare is zero with and without the small park) plus her fair share of the cost of what
would have been produced without her (5, her fair share of the small park), violating
no-extortion. □
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With a monotone decision rule, cost-sharing universal participation implies no-extortion.

Proposition 4. Given any environment EC ∈ EC, if the decision rule is monotone,
cost-sharing universal participation implies no-extortion.

Proof. Suppose α(θ) = 0. Since α is monotone, α(0, θ−i) = 0. Then CS-UP implies
τi(θ) ≤ 0 as desired. ■

With a monotone decision rule, the cost-sharing pivotal mechanism satisfies no-
extortion and the fair pricing principle per unit, but it violates the fair pricing prin-
ciple (see Example 3). That said, the cost-sharing pivotal mechanism satisfies the
fair pricing principle under the natural assumption that marginal values are non-
increasing and marginal costs are non-decreasing.

Assumption 1. Suppose v′i(y, θi) is non-increasing in y for all i and θi and c′(y) and
c′i(y) are non-decreasing for all i.

Example 3 (Without Assumption 1, the CSP violates the FPP). Let I = {i, j} and
Y = {0, 1, 2}, representing no park, a small park, and a large park, respectively. The
cost of the small park is 10 and the cost of the large park is 20, and each individual’s
fair share is 5 for the small park and 10 for the large park. Individual i values the
small park at 0 and the large park at 11 (violating Assumption 1), and individual j
values the small park at 11 and the large park at 11. Total welfare is 0 with no park,
0+ 11− 10 = 1 with the small park, and 11+ 11− 20 = 2 with the large park, so the
large park is the efficient decision.

Ignoring i’s preferences, the small park would be produced for a total welfare to i’s
opponents of 1. With i, the large park is produced for a total welfare to i’s opponents
of 11− 20 = −9. The CSP charges i the welfare loss she imposes on others by having
her preferences taken into account (1 − (−9) = 10) plus her fair share of the cost of
what would have been produced without her (5), for a total of 15. The FPP requires
that i pay no more than the maximum of her value and her fair share of what is
produced. Since 15 is larger than both i’s value for the large park (11) and her fair
share of its cost (10), the CSP violates the FPP.36 □

In Theorem 1, we showed that the cost-sharing pivotal mechanism can be character-
ized as the revenue-maximizing Groves mechanism subject to cost-sharing universal
participation. We now show that the cost-sharing pivotal mechanism can also be

36On the other hand, the FPP per unit requires that i pay no more than the maximum of her
marginal value and her marginal fair share for each marginal unit of what is produced—i.e., she can
pay up to 5 for the first unit and up to 11 for the second (up to 16 total).
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characterized as the revenue-maximizing Groves mechanism subject to the fair pric-
ing principle.

Theorem 3. Consider any environment EC ∈ EC and any efficient and monotone
decision rule α. A mechanism f = (α, τ) maximizes ex-post revenue among all mech-
anisms which satisfy strategy-proofness, efficiency, and the fair pricing principle per
unit if and only if it is a cost-sharing pivotal mechanism. Under Assumption 1, the
same holds replacing the fair pricing principle per unit with the fair pricing principle.

Proof Commentary. The proof proceeds as in Theorem 1, though with several more cases.

□

Note that in binary public good environments,37 where a public project can either be
provided or not, Assumption 1 always holds.

Stepping back, the cost-sharing pivotal mechanism satisfies cost-sharing universal
participation and, with a monotone decision rule, no-extortion, the fair pricing prin-
ciple per unit, and, under Assumption 1, the fair pricing principle. On the other
hand, the Clarke mechanism violates no-extortion, the fair pricing principle per unit,
the fair pricing principle, and, with a monotone decision rule, cost-sharing universal
participation.

While we have characterized the cost-sharing pivotal mechanism as the mechanism
which maximizes ex-post revenue subject to strategy-proofness, efficiency, and either
cost-sharing universal participation or the fair pricing principle, our goal is not actu-
ally to maximize revenue. These simply turn out to be two characterizing features
of the mechanism. Our goal is to balance the budget, or to come as close as possible
to doing so. It is then important to ask the question: does the cost-sharing pivotal
mechanism raise too much revenue? In particular, does there exist a mechanism that
always comes closer to ex-post budget-balance than the cost-sharing pivotal mecha-
nism? The answer is no.

Theorem 4. Consider any environment EC ∈ EC. Suppose that for any i and θ−i,
maxA∗(0, θ−i) exists and there exists θi ∈ Θi such that

v′i(y, θi) =

{
ϕi(y) if y ≤ maxA∗(0, θ−i)
0 if y > maxA∗(0, θ−i)

, (1)

where ϕi(y) ≥ maxj ̸=i v
′
j(y, θj) and ϕi(y) > 0 for all y.38 For any efficient and mono-

tone decision rule α, there is no strategy-proof and cost-sharing universal participation

37Binary public good environments are a special case of finite public good environments, which
are a special case of continuous public good environments. See Section 8.

38This is a weak richness condition on the domain of values which says that each individual may
value marginal units of the public good as much as any other individual and that this marginal value
may drop to zero at any point.
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mechanism that is no farther from ex-post budget-balance than a cost-sharing pivotal
mechanism for every θ. The same holds replacing cost-sharing universal participation
with the fair pricing principle per unit. Under Assumption 1, the same holds replacing
the fair pricing principle per unit with the fair pricing principle.

Proof Sketch. For any θ−i, if θi satisfies (1) then every agent’s pivotal payment is zero, so
the CSP is either exactly budget-balanced or runs a deficit at θ.39 By Holmström (1979), an
efficient mechanism is strategy-proof if and only if i’s transfer can be expressed as the sum
of her pivotal payment and a term that depends only on her opponents’ reports hi(θ−i). If
hi(θ−i) < ci(α(0, θ−i)) the mechanism runs a strictly larger budget-deficit at θ than a CSP,
and if hi(θ−i) > ci(α(0, θ−i)) the mechanism violates cost-sharing universal participation
by Theorem 1 and the fair pricing principle by Theorem 3. ■

8 Finite Public Good Environments

In this section, I consider random sequences of finite public good environments with
increasing population size n and show that the cost-sharing pivotal mechanism is
asymptotically ex-post budget-balanced (Theorem 5) and that it is effectively the
unique such mechanism which also satisfies strategy-proofness, efficiency, and at least
one of cost-sharing universal participation and the fair pricing principle (Theorem 6).
Three key facets of this analysis are the following.

1. I allow the cost of the public goods to vary arbitrarily with n.

2. I allow individual cost shares to depend arbitrarily on observable characteristics
and for observable characteristics to be arbitrarily correlated with individual
types.

3. The net value approach cannot accommodate either.

I discuss each in turn and then present the formal analysis.

8.1 The cost of the public good can vary arbitrarily with
population size

It is common that asymptotic results involving sequences of public good environments
depend on how the sequence of cost functions grows with n.40 I allow costs to vary
arbitrarily with n. This is an important distinction. To see this, consider for simplicity
a binary public good environment. We do not know the population distribution of
values. We would like to talk about what happens in large populations for any such
distribution. That is, we would like to learn about what happens as we increase the

39If the efficient decision is unique for each θ, this would read simply as: for any θ−i, if θi satisfies
(1) then no agent is pivotal, so the CSP is EPBB at θ.

40See e.g., Mailath and Postlewaite (1990) and Xi and Xie (2021).
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number of i.i.d. draws from any distribution holding all else constant. But what does
it mean to hold all else constant? In particular, what about the relationship between
the population size and the cost of the public good should be held constant?

If we assume costs grow very slowly or not at all, then as the population grows large,
the efficient decision is almost surely to produce the good, making the public good
provision problem trivial, no matter the underlying population distribution. If it is
efficient to produce the good with arbitrarily high probability, we do not need to elicit
preferences—we can simply produce the good and charge everyone their fair share.
Similarly, if we assume costs grow sufficiently quickly, then as the population grows
large, the efficient decision is almost surely not to produce the good, again making
the problem trivial. To avoid this situation in which the chosen sequence of cost
functions plays a significant (and artificial) role in the analysis, we would like our
results to be robust to any such sequence—and indeed they are.41

8.2 Individual cost shares can vary arbitrarily with observ-
ables

So far the arbitrariness of (exogenously given) cost shares has not played a role in
the analysis. But this will no longer be the case, as we will need to make state-
ments about deviations from budget-balance, and this depends on the individuals’
cost shares—and, in particular, on how they correlate with the individuals’ types.
We can make probabilistic statements about outcomes with just a prior on Θ—the
environment itself need not be random. However, since cost shares may be a function
of individuals’ observable characteristics (see Section 4), which may be correlated
with types, we must now consider environments which are themselves random. No-
tably, when making probabilistic statements about outcomes, the commonly assumed
special case of equal cost shares, ci(y) = c(y)/n for all i, assumes away an important
dimension of fair public good provision—that fair shares may depend on observables,
and observables may be correlated with types.

To gain some intuition, consider a CSP with equal cost shares. It might be that the
expected distance from ex-post budget-balance is small because almost everyone is
not pivotal and so pays their equal share, which gets increasingly close to the full cost.
However, now suppose an individual’s fair share is determined by her income, which
is highly correlated with her value for the public good. In particular, suppose that
those who tend to be pivotal tend to have an extremely large fair share, leaving much
smaller fair shares for everyone else. Now, even if almost everyone is not pivotal, they

41Arguably, the object that should be held constant is precisely the probability that the efficient
decision is to produce the good. That is, in any finite public good provision environment, we would
like P(αn(θn) = y) to be constant in n for each y. Computing sequences of cost functions with this
property is not trivial. Luckily, we do not have to worry about this—since the results hold for any
sequence {cn(·)}n∈N, they clearly hold for those sequences as well.
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will pay a much smaller amount, which may not approach the full cost. In particular,
the CSP might be asymptotically ex-post budget-balanced in the former case but not
the latter.

Encouragingly, the results herein are robust to all the aforementioned concerns. The-
orem 5 shows that the CSP is asymptotically ex-post budget-balanced no matter how
the cost of the public goods vary with n, no matter how fair shares are constructed
from observables, and no matter how types and observables are correlated.

8.3 The net value approach cannot accommodate these re-
sults

Importantly, the net value approach cannot accommodate these results. Consider
again a binary public good environment. We would like to fix a population distribu-
tion of values and consider sequences of i.i.d. random draws from this distribution.
But while individuals’ values are i.i.d., individuals’ net values depend on their cost
share, which depends on the total cost of the public good and the observable charac-
teristics of the others, and hence are in general not i.i.d. Indeed, assuming net values
are i.i.d. requires the underlying assumptions that 1) cost shares are split equally
across individuals and 2) costs increase linearly with population size.

8.4 Formal analysis

I now introduce these objects formally. Let EF ⊂ EX be the set of environments with
ordered and finite social alternatives; quasilinear preferences; private, non-decreasing,
and convex values; and a fully indifferent type. In particular, EF is the set of environ-
ments in EX where each of the following are true. Social alternatives are finite and
ordered: Y = {0, 1, . . . , K} for some K ∈ N. For each i and θi, vi is non-decreasing in
y with vi(0, θi) normalized to 0 for all θi. For simplicity, let vi(y, θi) = θi(y) for all i ∈ I
and y = 1, . . . , K, where θi(y) is the yth component of θi. Costs c and fair shares ci for
each i are non-decreasing with c(0) normalized to 0. Note that every finite environ-
ment EF ∈ EF can be equivalently represented by a continuous environment EC ∈ EC

in which we restrict attention to decision rules α with range Y = {0, 1, . . . , K} and
vi, c, and ci for all i are piecewise linear on {[0, 1), [1, 2), . . . , [K − 1, K), [K,∞)} and
constant on [K,∞). In this sense, EF ⊂ EC .

Let Y0 = {0, . . . , K} be a set of social alternatives, Θ0 ⊆ RK
+ be a set of types,

and Z0 be an arbitrary set of observable characteristics. Consider any distribution
over Θ0 ×Z0 such that the variance of an individual’s value differences is finite—i.e.,
E
(
(θi(b) − θi(a))

2
)
< ∞ for all a, b ∈ Y . Let ∆(Θ0 × Z0) be the set of all such

distributions. Let (θi, zi)i∈N be a sequence of i.i.d. random vectors with distribution
F ∈ ∆(Θ0 × Z0).

For all n ∈ N, let In = {1, . . . , n}, Y n = Y0, Θ
n = (Θ0)

n, Zn = (Z0)
n, vni (y, θi) = θi(y)
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for all i ∈ In and y = 1, . . . , K, cn : Y n → R+ be any non-decreasing function, and
ϕn : Y n × Zn → Rn be any function such that

∑n
i=1 ϕ

n
i (y, z) = c(y) for all y ∈ Y n

and z ∈ Zn.

Let θn = (θi)
n
i=1 denote the sequence of types up to n and zn = (zi)

n
i=1 the sequence

of observable characteristics up to n. For each n, the realization of zn determines the
cost shares for each individual cni (y) = ϕn

i (y, z), and given a sequence of mechanisms
((αn, τn))n∈N, the realization of θn determines the public good provision level αn(θn)
and, along with zn, each individual’s transfer τni (θ

n). Let (θn, zn, En)n∈N denote a
sequence of finite environments generated by i.i.d. draws from some F ∈ ∆(Θ0 ×
Z0).

Definition 18. Given any sequence of finite environments (θn, zn, En)n∈N generated
by i.i.d. draws from some F ∈ ∆(Θ0 × Z0), a sequence of mechanisms ((αn, τn))n∈N
is asymptotically ex-post budget-balanced (AEPBB) if

1. the probability of ex-post budget-balance goes to one as n goes to infinity, i.e.,

P
( n∑

i=1

τni (θ
n)− cn(αn(θn)) = 0

)
→ 1 as n → ∞,

and

2. the expected distance from ex-post budget-balance per capita goes to zero as n
goes to infinity, i.e.,

1

n
E
(∣∣∣ n∑

i=1

τni (θ
n)− cn(αn(θn))

∣∣∣) → 0 as n → ∞.

The following two propositions are the driving force behind Theorem 5, which shows
that the cost-sharing pivotal mechanism is AEPBB. They are also useful results in
their own right. The first says that the total CSP payment is bounded below by zero
and above by c(α(θ)) + c(K), and hence that the distance from EPBB in a CSP is
bounded by c(K). The second says that the probability that any individual is pivotal
goes to zero as n goes to infinity.

Proposition 5. Consider any environment EF ∈ EF . For any θ ∈ Θ, the total
pivotal payment can be no less than zero and no more than c(α(θ)), and the total
CSP payment can be no less than zero and no more than c(α(θ)) + c(K). That is,

1. 0 ≤
∑n

i=1 ti(θ) ≤ c(α(θ)) and

2. 0 ≤
∑n

i=1 τi(θ) ≤ c(α(θ)) + c(K),
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where ti(θ) is i’s transfer in a pivotal mechanism and τi(θ) = ti(θ) + ci(α(0, θ−i)) is
i’s transfer in a CSP mechanism. If the decision rule is monotone, the second upper
bound can be lowered to 2c(α(θ)).

Proof Sketch. With only two alternatives {0, 1}, the maximum revenue in a pivotal mech-
anism occurs when every individual is exactly pivotal, resulting in a revenue equal to the
difference in cost between the two alternatives. Now, consider running a sequence of binary
pivotal mechanisms on {0, . . . ,K}, where the selected alternative from {0, 1} is run against
2, the selected alternative from that mechanism is run against 3, and so on.42 Lemma 1
shows that the transfer in such a sequence of binary pivotal mechanisms is always larger
than the transfer in a single pivotal mechanism on {0, . . . ,K}.43 Hence the total revenue in
a pivotal mechanism on {0, . . . ,K} is less than the revenue from a sequence of binary pivotal
mechanisms, each of which has a maximum revenue equal to the difference in cost between
the two alternatives considered, so the pivotal mechanism raises no more than c(α(θ)) in
revenue. In a CSP, the total fair-share payment

∑n
i=1 ci(α(0, θ−i)) can be no more than

c(K), and with a monotone decision rule, can be no more than c(α(θ)). ■

Proposition 6. Given any sequence of finite environments (θn, zn, En)n∈N generated
by i.i.d. draws from some F ∈ ∆(Θ0 × Z0), the probability that there is at least one
pivotal player in En given θn goes to zero as n goes to infinity.

Proof Commentary. The proof follows similar arguments as those found in Rob (1982),

generalized for finite public good environments with arbitrary cost sequences. For the binary

case, this involves showing that the probability that the maximum value θ∗n in a sequence

{θi}ni=1 of non-negative i.i.d. random variables is greater than the distance between the

summation
∑n

i=1 θi and any non-negative real number cn, goes to zero. □

We may now show the cost-sharing pivotal mechanism is AEPBB.

Theorem 5. Given any sequence of finite environments (θn, zn, En)n∈N generated
by i.i.d. draws from some F ∈ ∆(Θ0 × Z0), any sequence of cost-sharing pivotal
mechanisms ((αn, τn))n∈N is asymptotically ex-post budget-balanced.

Proof Sketch. Condition 1 of AEPBB follows by Proposition 6. Consider Condition 2.
Suppose a binary public good environment for simplicity. The full proof considers any
finite public good environment. The distance from EPBB in a CSP is bounded by c(1)

(Proposition 5). Suppose cn(1)
n ↛ ∞ as n → ∞. The CSP is EPBB if no individual is

pivotal. The probability that any individual is pivotal goes to zero as n goes to infinity
(Proposition 6). Suppose cn(1)

n → ∞ as n → ∞. The CSP is EPBB if no good is produced.

42Viewed as a static mechanism, this mechanism is efficient and can be made to have the same
decision rule as any pivotal mechanism on {0, . . . ,K}, though it is not strategy-proof.

43Roughly, you have more opportunities to accumulate pivotal payments in a sequence of binary
pivotal mechanisms than in a single overall pivotal mechanism.
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The probability that it is efficient to produce the good goes to zero faster than cn(1)
n goes

to infinity by Chebyshev’s inequality. ■

Given an efficient and monotone decision rule, there are many transfer rules for which
the resulting mechanism satisfies AEPBB, strategy-proofness, and at least one of cost-
sharing universal participation and the fair pricing principle. This is not surprising,
as the asymptotic nature of AEPBB affords many mechanisms that behave similarly
in the limit.

However, in a sense that the following theorem makes precise, all such transfer rules
are simply perturbations from the CSP transfer rule whose deviations disappear as n
goes to infinity. In particular, given any sequence of efficient and monotone decision
rules, any AEPBB sequence of mechanisms satisfying strategy-proofness and at least
one of cost-sharing universal participation and the fair pricing principle must have a
transfer rule equal to that of the CSP plus a term hn

i which is 1) non-negative, 2)
zero with probability one in the limit, and 3) zero in expectation, averaged across in-
dividuals, in the limit. In this sense, the cost-sharing pivotal mechanism is effectively
the unique mechanism which satisfies AEPBB, strategy-proofness, efficiency, and at
least one of cost-sharing universal participation and the fair pricing principle.

Theorem 6. Consider any sequence of finite environments (θn, zn, En)n∈N generated
by i.i.d. draws from some F ∈ ∆(Θ0 × Z0). Let (αn)n∈N be a sequence of efficient
and monotone decision rules and (τn)n∈N be a sequence of CSP transfer rules. A
sequence of efficient and monotone mechanisms ((αn, τ̂n))n∈N satisfies AEPBB and
strategy-proofness and cost-sharing universal participation for each n if and only if,
for all i,

τ̂ni (θ
n) = τni (θ) + hn

i (θ
n
−i),

for some sequence of functions hn
i : Θ−i → R such that

1. hn
i (θ

n
−i) ≤ 0 for all θn−i ∈ Θn

−i, i, and n,

2. limn→∞ P(hn
i (θ

n
−i) = 0 for all i) = 1, and

3. limn→∞
1
n

∑n
i=1 E

[
hn
i (θ

n
−i)

]
= 0.

The same holds replacing cost-sharing universal participation with the fair pricing
principle per unit. Under Assumption 1, the same holds replacing the fair pricing
principle per unit with the fair pricing principle.

Proof Sketch. 1. Follows from Holmström (1979), Theorem 1, and Theorem 3.

2. The probability that no agent is pivotal goes to one (Proposition 6), and the CSP is
EPBB when no agent is pivotal. Hence, by (1), P(EPBB) → 1 ⇐⇒ P(

∑n
i=1 h

n
i (θ

n
−i) =

0 | no one pivotal) → 1 ⇐⇒ P(hni (θn−i) = 0 for all i | no one pivotal) → 1 ⇐⇒
P(hni (θn−i) = 0 for all i) → 1.
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3. Follows from Theorem 5.

■

9 Conclusion

I have argued that the cost-sharing pivotal mechanism is a solution to the public good
provision problem when the population is large and the government has the power
to tax—and that it is effectively the unique solution. I conclude with an illustration.
Consider what many would deem the simplest and most intuitive mechanism for
providing public goods—select the efficient decision and have everyone pay their fair
share of its cost. Let’s call this a share-the-cost mechanism (STC). The STC is simple.
It is efficient, fair, and exactly budget-balanced.

But it has infinitely perverse incentives.44 Consider the binary case. If your value for
the good is greater than your fair share of its cost, then you want it to be produced—
period. It is then weakly dominant to report an infinitely large value. If your value for
the good is less than your fair share of its cost, then you want it not to be produced—
period. It is then weakly dominant to report a zero value. Hence, the STC is far
from being a viable solution to the public good provision problem.

Or is it? The cost-sharing pivotal mechanism is just a small tweak of the STC. The
STC says that each individual should pay her fair share of what is produced. The CSP
says that each individual should pay her fair share of what is produced, unless she is
pivotal, in which case she should pay her fair share of what would have been produced
without her plus enough to compensate the others for the welfare loss imposed on
them. These only differ when an individual is pivotal. But the probability that
any individual is pivotal goes to zero as the population gets large. It is striking
that a small tweak which occurs with vanishing probability can shift incentives from
infinitely perverse to fully strategy-proof—but that is precisely what the CSP does.
The cost-sharing pivotal mechanism can thus be seen as a tweak of the share-the-
cost mechanism which repairs its egregious manipulability while sacrificing little of
its otherwise stellar properties.
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Moulin, Hervé J. 1988. Axioms of Cooperative Decision Making. Cambridge Uni-
versity Press.

Nath, Swaprava, and Tuomas Sandholm. 2019. “Efficiency and budget balance
in general quasi-linear domains.” Games and Economic Behavior, 113: 673–693.

Rob, Rafael. 1982. “Asymptotic Efficiency of the Demand Revealing Mechanism.”
Journal of Economic Theory, 28: 207–220.
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A Constructing Fair Cost Shares

In this appendix, I present some examples of how a government might construct fair
shares from observable traits.

A simple notion of fairness is that of equal shares, which says that it is fair for
everyone to pay an equal share of the cost: ϕi(y, z) = c(y)/n for all y and z. But as
discussed in Section 4, fair shares may depend on anything which is observable to the
government, including income level and distance from the public good.

Suppose income levels wi are observable. An appealing notion of fairness might then
be that it is fair for everyone to pay an equal share of their income:

ϕi(y, z) = c(y)
wi∑
j wj

for all y and z.

In fact, a natural generalization of this idea is that it is fair for everyone to pay an
equal share of their duty :

ϕi(y, z) = c(y)
δ(zi)∑
j δ(zj)

,
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where Zi = Z0 for all i and δ : Z0 → R+ is an index measuring i’s relative duty to
pay for the public good.

If distance di from the public good is observable, an appealing index of relative duty
might be one in which duty is constant within a particular radius r and is inversely
proportional to distance beyond r,

δ(di) =

{
1/r if 0 ≤ di ≤ r
1/di if di > r

.

If both income wi and distance di are observable, an appealing index of relative duty
might be

δ(wi, di) =

{
wi/r if 0 ≤ di ≤ r
wi/di if di > r

,

so that doubling one’s income doubles one’s duty and doubling one’s distance halves
one’s duty beyond radius r.

B Proofs Omitted from Main Body

Theorem 3. Consider any environment EC ∈ EC and any efficient and monotone
decision rule α. A mechanism f = (α, τ) maximizes ex-post revenue among all mech-
anisms which satisfy strategy-proofness, efficiency, and the fair pricing principle per
unit if and only if it is a cost-sharing pivotal mechanism. Under Assumption 1, the
same holds replacing the fair pricing principle per unit with the fair pricing principle.

Proof. Consider any environment EC ∈ EC . By Holmström (1979), a mechanism f is
strategy-proof and efficient if and only if it is a Groves mechanism. Let f = (α, τ) be a
Groves mechanism with a monotone decision rule α and τi(θ) = gi(θ−i)−[(

∑
j ̸=i vj(α(θ), θj))−

c(α(θ))] for some gi : Θ−i → R.

Part I. We would like to show that gi(θ−i) = [(
∑

j ̸=i vj(α(0, θ−i), θj)) − c(α(0, θ−i))] +
ci(α(0, θ−i)) maximizes ex post revenue subject to the FPP per unit. The FPP per unit

requires that for all i and θ,
∫ α(θ)
0 max{v′i(y, θi), c′i(y)} dy+[(

∑
j ̸=i vj(α(θ), θj))−c(α(θ))] ≥

gi(θ−i), so to maximize ex-post revenue subject to the FPP per unit, set

gi(θ−i) = inf
θi∈Θi

{∫ α(θ)

0
max

{
v′i(y, θi), c

′
i(y)

}
+
∑
j ̸=i

v′j(y, θj)− c′(y) dy
}
.

We would like to show that for any θ, increasing v′i(y, θi) pointwise weakly increases the
objective function, and hence that 0 ∈ Θi is a minimizer. Suppose v′i(y, θ̂i) ≥ v′i(y, θi) for all

y ≥ 0. Since α is monotonic, α(θ̂i, θ−i) ≥ α(θ). We would like to show
∫ α(θ̂i,θ−i)
0 max{v′i(y, θ̂i), c′i(y)}+
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∑
j ̸=i v

′
j(y, θj)− c′(y) dy ≥

∫ α(θ)
0 max{v′i(y, θi), c′i(y)}+

∑
j ̸=i v

′
j(y, θj)− c′(y) dy, or equiv-

alently,∫ α(θ)

0
max

{
v′i(y, θ̂i), c

′
i(y)

}
−max

{
v′i(y, θi), c

′
i(y)

}
dy

+

∫ α(θ̂i,θ−i)

α(θ)
max

{
v′i(y, θ̂i), c

′
i(y)

}
+

∑
j ̸=i

v′j(y, θj)− c′(y) dy ≥ 0.

The first term is non-negative, and by definition of α,∫ α(θ̂i,θ−i)

0
v′i(y, θ̂i) +

∑
j ̸=i

v′j(y, θj)− c′(y) dy ≥
∫ α(θ)

0
v′i(y, θ̂i) +

∑
j ̸=i

v′j(y, θj)− c′(y) dy

⇐⇒
∫ α(θ̂i,θ−i)

α(θ)
v′i(y, θ̂i) +

∑
j ̸=i

v′j(y, θj)− c′(y) dy ≥ 0

=⇒
∫ α(θ̂i,θ−i)

α(θ)
max

{
v′i(y, θ̂i), c

′
i(y)

}
+
∑
j ̸=i

v′j(y, θj)− c′(y) dy ≥ 0.

Hence, 0 ∈ Θi is a minimizer and for all θ−i,

gi(θ−i) =

∫ α(0,θ−i)

0
max

{
v′i(y, 0), c

′
i(y)

}
+
∑
j ̸=i

v′j(y, θj)− c′(y) dy

=
[(∑

j ̸=i

vj(α(0, θ−i), θj)
)
− c(α(0, θ−i))

]
+ ci(α(0, θ−i)).

Part II. Suppose Assumption 1. We would like to show that gi(θ−i) = [(
∑

j ̸=i vj(α(0, θ−i), θj))−
c(α(0, θ−i))]+ci(α(0, θ−i)) maximizes ex-post revenue subject to the FPP. The FPP requires
that for all i and θ, max{vi(α(θ), θi), ci(α(θ))} + [(

∑
j ̸=i vj(α(θ), θj)) − c(α(θ))] ≥ gi(θ−i),

so to maximize ex-post revenue subject to the FPP, set

gi(θ−i) = inf
θi∈Θi

{
max

{∫ α(θ)

0
v′i(y, θi) dy,

∫ α(θ)

0
c′i(y) dy

}
+

∫ α(θ)

0

∑
j ̸=i

v′j(y, θj)− c′(y) dy

}
.

We would like to show that for any θ, increasing v′i(y, θi) pointwise weakly increases the
objective function, and hence that 0 ∈ Θi is a minimizer. Suppose v′i(y, θ̂i) ≥ v′i(y, θi) for
all y ≥ 0. Since α is monotonic, α(θ̂i, θ−i) ≥ α(θ). We would like to show

max
{∫ α(θ̂i,θ−i)

0
v′i(y, θ̂i) dy,

∫ α(θ̂i,θ−i)

0
c′i(y) dy

}
+

∫ α(θ̂i,θ−i)

0

∑
j ̸=i

v′j(y, θj)− c′(y) dy

≥ max
{∫ α(θ)

0
v′i(y, θi) dy,

∫ α(θ)

0
c′i(y) dy

}
+

∫ α(θ)

0

∑
j ̸=i

v′j(y, θj)− c′(y) dy
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which is equivalent to

max
{∫ α(θ̂i,θ−i)

0
v′i(y, θ̂i) dy,

∫ α(θ̂i,θ−i)

0
c′i(y) dy

}
−max

{∫ α(θ)

0
v′i(y, θi) dy,

∫ α(θ)

0
c′i(y) dy

}
+

∫ α(θ̂i,θ−i)

α(θ)

∑
j ̸=i

v′j(y, θj)− c′(y) dy ≥ 0.

Notice that, since
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i)+

∑
j ̸=i v

′
j(y, θj)−c′(y) dy ≥

∫ α(θ)
0 v′i(y, θ̂i)+

∑
j ̸=i v

′
j(y, θj)−

c′(y) dy, ∫ α(θ̂i,θ−i)

α(θ)
v′i(y, θ̂i) +

∑
j ̸=i

v′j(y, θj)− c′(y) dy ≥ 0.

Hence, it is sufficient to show

max
{∫ α(θ̂i,θ−i)

0
v′i(y, θ̂i) dy,

∫ α(θ̂i,θ−i)

0
c′i(y) dy

}
−max

{∫ α(θ)

0
v′i(y, θi) dy,

∫ α(θ)

0
c′i(y) dy

}
≥

∫ α(θ̂i,θ−i)

α(θ)
v′i(y, θ̂i) dy. (2)

Case 1. Suppose
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i) dy <

∫ α(θ̂i,θ−i)
0 c′i(y) dy and

∫ α(θ)
0 v′i(y, θi) dy <

∫ α(θ)
0 c′i(y) dy.

Then (2) becomes
∫ α(θ̂i,θ−i)
0 c′i(y) dy −

∫ α(θ)
0 c′i(y) dy ≥

∫ α(θ̂i,θ−i)
α(θ) v′i(y, θ̂i) dy, which holds if

and only if
∫ α(θ̂i,θ−i)
α(θ) c′i(y) dy ≥

∫ α(θ̂i,θ−i)
α(θ) v′i(y, θ̂i) dy, which is implied by the first inequality

and Assumption 1.

Case 2. Suppose
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i) dy <

∫ α(θ̂i,θ−i)
0 c′i(y) dy and

∫ α(θ)
0 v′i(y, θi) dy ≥

∫ α(θ)
0 c′i(y) dy.

Then (2) becomes
∫ α(θ̂i,θ−i)
0 c′i(y) dy −

∫ α(θ)
0 v′i(y, θi) dy ≥

∫ α(θ̂i,θ−i)
α(θ) v′i(y, θ̂i) dy which is im-

plied by the first inequality and the definition of θ̂i.

Case 3. Suppose
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i) dy ≥

∫ α(θ̂i,θ−i)
0 c′i(y) dy and

∫ α(θ)
0 v′i(y, θi) dy <

∫ α(θ)
0 c′i(y) dy.

Then (2) becomes
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i) dy−

∫ α(θ)
0 c′i(y) dy ≥

∫ α(θ̂i,θ−i)
α(θ) v′i(y, θ̂i) dy, which holds

if and only if
∫ α(θ)
0 v′i(y, θ̂i) dy ≥

∫ α(θ)
0 c′i(y) dy, which is implied by the first inequality and

Assumption 1.

Case 4. Suppose
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i) dy ≥

∫ α(θ̂i,θ−i)
0 c′i(y) dy and

∫ α(θ)
0 v′i(y, θi) dy ≥

∫ α(θ)
0 c′i(y) dy.

Then (2) becomes
∫ α(θ̂i,θ−i)
0 v′i(y, θ̂i) dy −

∫ α(θ)
0 v′i(y, θi) dy ≥

∫ α(θ̂i,θ−i)
α(θ) v′i(y, θ̂i) dy, which

holds by the definition of θ̂i.

Hence, 0 ∈ Θi is a minimizer and for all θ−i,

gi(θ−i) = max
{∫ α(0,θ−i)

0
v′i(y, 0) dy,

∫ α(0,θ−i)

0
c′i(y) dy

}
+

∫ α(0,θ−i)

0

∑
j ̸=i

v′j(y, θj)− c′(y) dy

=
[(∑

j ̸=i

vj(α(0, θ−i), θj)
)
− c(α(0, θ−i))

]
+ ci(α(0, θ−i)).
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Theorem 4. Consider any environment EC ∈ EC. Suppose that for any i and θ−i,
maxA∗(0, θ−i) exists and there exists θi ∈ Θi such that

v′i(y, θi) =

{
ϕi(y) if y ≤ maxA∗(0, θ−i)
0 if y > maxA∗(0, θ−i)

, (1)

where ϕi(y) ≥ maxj ̸=i v
′
j(y, θj) and ϕi(y) > 0 for all y.45 For any efficient and mono-

tone decision rule α, there is no strategy-proof and cost-sharing universal participation
mechanism that is no farther from ex-post budget-balance than a cost-sharing pivotal
mechanism for every θ. The same holds replacing cost-sharing universal participation
with the fair pricing principle per unit. Under Assumption 1, the same holds replacing
the fair pricing principle per unit with the fair pricing principle.

Proof. Let

ti(θ) =

[(∑
j ̸=i

vj(α(0, θ−i), θj)
)
− c(α(0, θ−i))

]
−
[(∑

j ̸=i

vj(α(θ), θj)
)
− c(α(θ))

]

=

∫ α(0,θ−i)

0

∑
j ̸=i

v′j(y, θj)− c′(y) dy −
∫ α(θ)

0

∑
j ̸=i

v′j(y, θj)− c′(y) dy

be i’s pivotal payment and τi(θ) = ti(θ) + ci(α(0, θ−i)) be i’s CSP transfer.

Part I. First, we would like to show that for any θ−i, there exists θi such that a CSP
mechanism does not run a strict budget surplus—i.e.,

∑n
i=1 τi(θ) ≤ c(α(θ)).

For any θ, y∗ ∈ A∗(θ) if and only if for any y′ ≤ y∗ ≤ y′′,∫ y∗

y′

∑
i∈I

v′i(y, θi)− c′(y) dy ≥ 0 ≥
∫ y′′

y∗

∑
i∈I

v′i(y, θi)− c′(y) dy.

That is, y∗ is efficient if and only if moving from any y′ ≤ y∗ to y∗ weakly increases welfare
and moving from y∗ to any y′′ ≥ y∗ weakly decreases welfare.

Fix any θ−i. Let θi satisfy (1). Then for any y′ < maxA∗(0, θ−i) < y′′,∫ maxA∗(0,θ−i)

y′

∑
k ̸=i

v′k(y, θk)− c′(y) dy ≥ 0 >

∫ y′′

maxA∗(0,θ−i)

∑
k ̸=i

v′k(y, θi)− c′(y) dy (3)

where the strict inequality follows since we are considering maxA∗(0, θ−i). By (3), for any
y′ < maxA∗(0, θ−i) < y′′,∫ maxA∗(0,θ−i)

y′

n∑
k=1

v′k(y, θk)− c′(y) dy > 0 >

∫ y′′

maxA∗(0,θ−i)

n∑
k=1

v′k(y, θi)− c′(y) dy

45This is a weak richness condition on the domain of values which says that each individual may
value marginal units of the public good as much as any other individual and that this marginal value
may drop to zero at any point.
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where the first strict inequality follows since ϕ(y) > 0 for all y ≤ A∗(0, θ−i). Hence,
α(θ) = maxA∗(0, θ−i). Since α(0, θ−i), α(θ) ∈ A∗(0, θ−i),∫ α(0,θ−i)

0

∑
k ̸=i

v′k(y, θk)− c′(y) dy =

∫ α(θ)

0

∑
k ̸=i

v′k(y, θk)− c′(y) dy,

so i’s pivotal payment is zero and τi(θ) = ci(α(0, θ−i)) ≤ ci(α(θ)) by monotonicity. By (3),
for any y′ < maxA∗(0, θ−i) < y′′,∫ maxA∗(0,θ−i)

y′

∑
k ̸=j

v′k(y, θk)− c′(y) dy ≥ 0 >

∫ y′′

maxA∗(0,θ−i)

∑
k ̸=j

v′k(y, θi)− c′(y) dy

by definition of v′i(y, θi). Hence, α(θ) = maxA∗(0, θ−i) ∈ A∗(0, θ−j). Since α(0, θ−j), α(θ) ∈
A∗(0, θ−j), ∫ α(0,θ−j)

0

∑
k ̸=j

v′k(y, θk)− c′(y) dy =

∫ α(θ)

0

∑
k ̸=j

v′k(y, θk)− c′(y) dy,

so j’s pivotal payment is zero and τj(θ) = cj(α(0, θ−j)) ≤ cj(α(θ)) by monotonicity. Hence,∑n
i=1 τi(θ) ≤ c(α(θ)) as desired.

Part II. Consider any environment EC ∈ EC . By Holmström (1979), a mechanism f is
strategy-proof and efficient if and only if it is a Groves mechanism. We may write i’s Groves
transfer as the sum of her pivotal payment and a term that depends only on her opponents’
reports, ti(θ) + hi(θ−i) for some hi : Θ−i → R. For any i and θ−i, if θi satisfies (1), then
setting hi(θ−i) < ci(α(0, θ−i)) runs a strictly larger budget-deficit than a CSP by Part I,
and setting hi(θ−i) > ci(α(0, θ−i)) violates CS-UP by Theorem 1 and the FPP per unit (the
FPP under Assumption 1) by Theorem 3. ■

We now proceed to prove Proposition 5, Proposition 6, and Theorem 5.

Consider any environment EF ∈ EF and any efficient decision rule α : Θ → Y . For
any Z ⊆ Y = {0, 1, . . . , K}, let A∗(θ;Z) = argmax y∈Z

∑
i∈I vi(y, θi)− c(y),

α̂(θ;Z) =

{
α(θ) if α(θ) ∈ Z

maxA∗(θ;Z) otherwise
,

and

ti(θ;Z) =
[(∑

j ̸=i

vj(α̂(0, θ−i;Z), θj)
)
−c(α̂(0, θ−i;Z))

]
−
[(∑

j ̸=i

vj(α̂(θ;Z), θj)
)
−c(α̂(θ;Z))

]
.

A∗(θ;Z) is the set of efficient alternatives within Z. α̂(θ;Z) is the decision rule that
selects according to α when α(θ) is in Z and selects the largest efficient alternative
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in Z otherwise. ti(θ;Z) is the pivot transfer rule associated with α̂(θ;Z). For any
k ≤ K, let

tSi (θ; {0, 1, . . . , k}) = ti(θ; {0, 1}) + ti(θ; {α̂(θ; {0, 1}), 2})
+ ti(θ; {α̂(θ; {α̂(θ; {0, 1}), 2}), 3}) + . . .+ ti(θ; {α̂(θ; . . .), k})

be the total transfer associated with running a sequence of binary pivotal mechanisms,
where the selected alternative from {0, 1} is run against 2, the selected alternative
from that mechanism is run against 3, and so on. Let ti(θ) = ti(θ;Y ) and tSi (θ) =
tSi (θ;Y ) be the pivot transfer and the sequential pivot transfer for i, respectively.

Lemma 1. Given any environment EF ∈ EF , t
S
i (θ) ≥ ti(θ) for all θ.

Proof. First notice that

tSi (θ) = ti(θ; {0, 1}) + ti(θ; {α̂(θ; {0, 1}), 2})
+ ti(θ; {α̂(θ; {0, 1, 2}), 3}) + . . .+ ti(θ; {α̂(θ; {0, 1, . . . , A− 1}), A}).

We now proceed by induction.

Step 1. We would like to show tSi (θ; {0, 1}) ≥ ti(θ; {0, 1}). By definition, tSi (θ; {0, 1}) =
ti(θ; {0, 1}).

Step 2. Suppose by induction that tSi (θ; {0, . . . , a}) ≥ ti(θ; {0, . . . , a}). We would like to
show that tSi (θ; {0, . . . , a+ 1}) ≥ ti(θ; {0, . . . , a+ 1}).

Case 1. Suppose α̂(0, θ−i; {0, . . . , a+ 1}) = a+ 1. Then y∗ = α̂(θ; {0, . . . , a+ 1}) ≤ a+ 1,
and by Proposition 3, y∗ ∈ A∗(0, θ−i; {0, . . . , a+ 1}). Hence, ti(θ; {0, . . . , a+ 1}) = 0. The
result follows since pivotal payments are non-negative.

Case 2. Suppose α̂(0, θ−i; {0, . . . , a+ 1}) < a+ 1. We have

ti(θ; {0, . . . , a+1}) =
[(∑

j ̸=i

vj(α̂(0, θ−i; {0, . . . , a+1}), θj)
)
− c(α̂(0, θ−i; {0, . . . , a+1}))

]
−
[(∑

j ̸=i

vj(α̂(θ; {0, . . . , a+ 1}), θj)
)
− c(α̂(θ; {0, . . . , a+ 1}))

]
and

tSi (θ; {0, . . . , a+ 1}) = tSi (θ; {0, . . . , a})

+
[(∑

j ̸=i

vj(α̂(0, θ−i; α̂(θ; {0, . . . , a}) ∪ {a+ 1}), θj)
)
− c(α̂(0, θ−i; α̂(θ; {0, . . . , a}) ∪ {a+ 1}))

]
−
[(∑

j ̸=i

vj(α̂(θ; α̂(θ; {0, . . . , a}) ∪ {a+ 1}), θj)
)
− c(α̂(θ; α̂(θ; {0, . . . , a}) ∪ {a+ 1}))

]
.
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Hence,

tSi (θ; {0, . . . , a+ 1})− ti(θ; {0, . . . , a+ 1}) = tSi (θ; {0, . . . , a})

+
[(∑

j ̸=i

vj(α̂(0, θ−i; α̂(θ; {0, . . . , a}) ∪ {a+ 1}), θj)
)
− c(α̂(0, θ−i; α̂(θ; {0, . . . , a}) ∪ {a+ 1}))

]
−
[(∑

j ̸=i

vj(α̂(0, θ−i; {0, . . . , a+ 1}), θj)
)
− c(α̂(0, θ−i; {0, . . . , a+ 1}))

]
≥

[(∑
j ̸=i

vj(α̂(0, θ−i; {0, . . . , a}), θj)
)
− c(α̂(0, θ−i; {0, . . . , a}))

]
−
[(∑

j ̸=i

vj(α̂(θ; {0, . . . , a}), θj)
)
− c(α̂(θ; {0, . . . , a}))

]
+
[(∑

j ̸=i

vj(α̂(0, θ−i; α̂(θ; {0, . . . , a}) ∪ {a+ 1}), θj)
)
− c(α̂(0, θ−i; α̂(θ; {0, . . . , a}) ∪ {a+ 1}))

]
−
[(∑

j ̸=i

vj(α̂(0, θ−i; {0, . . . , a+ 1}), θj)
)
− c(α̂(0, θ−i; {0, . . . , a+ 1}))

]
= −

[(∑
j ̸=i

vj(α̂(θ; {0, . . . , a}), θj)
)
− c(α̂(θ; {0, . . . , a}))

]
+
[(∑

j ̸=i

vj(α̂(0, θ−i; α̂(θ; {0, . . . , a}) ∪ {a+ 1}), θj)
)
− c(α̂(0, θ−i; α̂(θ; {0, . . . , a}) ∪ {a+ 1}))

]
≥ 0,

where the first equality follows by α̂(θ; {0, . . . , a + 1}) = α̂(θ; α̂(θ; {0, . . . , a}) ∪ {a + 1}),
the first inequality by the inductive hypothesis, and the final equality and inequality by the
Case 2 assumption. ■

Proposition 5. Consider any environment EF ∈ EF . For any θ ∈ Θ, the total
pivotal payment can be no less than zero and no more than c(α(θ)), and the total
CSP payment can be no less than zero and no more than c(α(θ)) + c(K). That is,

1. 0 ≤
∑n

i=1 ti(θ) ≤ c(α(θ)) and

2. 0 ≤
∑n

i=1 τi(θ) ≤ c(α(θ)) + c(K),

where ti(θ) is i’s transfer in a pivotal mechanism and τi(θ) = ti(θ) + ci(α(0, θ−i)) is
i’s transfer in a CSP mechanism. If the decision rule is monotone, the second upper
bound can be lowered to 2c(α(θ)).

Proof. Part I. Step 1. First, we show 0 ≤
∑n

i=1 ti(θ) ≤ c(α(θ)) for any binary environment

EB ∈ EB. Consider any θ, θ̂ ∈ Θ where vk(1, θ̂k) < vk(1, θk) for some k and vj(1, θ̂j) =
vj(1, θj) for all j ̸= k.

1. If
∑n

i=1 vi(1, θi) < c(1),
∑n

i=1 ti(θ) =
∑n

i=1 ti(θ̂) = 0.
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2. If
∑n

i=1 vi(1, θi) ≥ c(1) and
∑n

i=1 vi(1, θ̂i) < c(1),
∑n

i=1 ti(θ) ≥ 0 =
∑n

i=1 ti(θ̂).

3. If
∑n

i=1 vi(1, θi) ≥ c(1) and
∑n

i=1 vi(1, θ̂i) ≥ c(1),
∑n

i=1 ti(θ̂) ≥
∑n

i=1 ti(θ) ≥ 0.

To see (3), notice that k’s pivotal payment remains unchanged between θ and θ̂. Consider
any j ̸= k. If j is pivotal under θ−j , then she remains pivotal under θ̂−j and her pivotal

payment strictly increases. If j is not pivotal under θ−j and remains not pivotal under θ̂−j ,

her pivotal payment remains zero. If j is not pivotal under θ−j , but is pivotal under θ̂−j ,
her payment increases from zero to some positive amount.

Hence, to maximize
∑n

i=1 ti(θ) with respect to θ, it must be that
∑n

i=1 vi(1, θi) = c(1) and
the good is produced, i.e., every i is exactly pivotal. In this case, each i’s pivotal payment
is vi(1, θi), and the total pivotal payment is c(1). Since the total pivotal payment is zero
when the good is not produced, the result follows.

Step 2. We now show this holds for any finite environment EF ∈ EF . To show that the
total pivotal payment is non-negative, note that individual pivotal payments are themselves
non-negative. To show that the total pivotal payment is no more than c(K), note that

n∑
i=1

ti(θ) ≤
n∑

i=1

tSi (θ)

=
n∑

i=1

ti(θ; {0, 1}) + ti(θ; {α̂(θ; {0, 1}), 2})

+ ti(θ; {α̂(θ; {α̂(θ; {0, 1}), 2}), 3}) + . . .+ ti(θ; {α̂(θ; . . .),K})

≤ c(α̂(θ; {0, 1}))− c(0)

+ c(α̂(θ; {α̂(θ; {0, 1}), 2}))− c(α̂(θ; {0, 1}))

+ c(α̂(θ; {α̂(θ; {α̂(θ; {0, 1}), 2}), 3}))− c(α̂(θ; {α̂(θ; {0, 1}), 2}))

+ . . .+ c(α̂(θ; {α̂(θ; . . .),K}))− c(α̂(θ; {α̂(θ; . . .),K − 1}))

= c(α̂(θ; {α̂(θ; . . .),K}))− c(0)

= c(α(θ)),

where the first inequality follows by Lemma 1 and the second inequality follows by Step 1.

Part II. Pivotal payments and fair-share payments are always non-negative. Hence, the
total CSP payment is no less than zero.

The total pivotal payment
∑n

i=1 ti(θ) is no more than c(α(θ)) by Part I. The total fair
share payment

∑n
i=1 ci(α(0, θ−i)) can be no more than c(K), since

∑n
i=1 ci(α(0, θ−i)) ≤∑n

i=1 ci(K) = c(K), and with a monotone decision rule can be no more than c(α(θ)), since∑n
i=1 ci(α(0, θ−i)) ≤

∑n
i=1 ci(α(θ)) = c(α(θ)). Hence, the total CSP payment can be no

more than c(α(θ)) + c(K) and with a monotone decision rule, no more than 2c(α(θ)). ■
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Let EB ⊂ EF denote the set of binary environments, i.e., the set of finite environments
with K = 1.

Lemma 2. Given any sequence of binary environments (θn, zn, En)n∈N generated by
i.i.d. draws from some F ∈ ∆(Θ0 × Z0), the probability that there is at least one
pivotal player in En given θn goes to zero as n goes to infinity.

Proof. Let cn = cn(1), µ = E(θi), σ2 = Var(θi), and θ∗n = maxi∈{1,...,n} θi. Then
P(k is pivotal in En given θn) ≤ P(

∑
j ̸=k, j≤n θj ≤ cn and

∑n
i=1 θi ≥ cn) and

P (∃ pivotal player in En given θn) ≤ P
(
∃k :

∑
j ̸=k, j≤n

θj ≤ cn and

n∑
i=1

θi ≥ cn

)
= P

(
∃k : 0 ≤ cn −

∑
j ̸=k, j≤n

θj and θk ≥ cn −
∑

j ̸=k, j≤n

θj

)
≤ P

(
∃k : θk ≥

∣∣∣ ∑
j ̸=k, j≤n

θj − cn

∣∣∣)
≤ P

(
∃k : 2θk ≥

∣∣∣ n∑
i=1

θi − cn

∣∣∣)
= P

(
θ∗n ≥ 1

2

∣∣∣ n∑
i=1

θi − cn

∣∣∣).
We would like to show P

(
θ∗n ≥ 1

2

∣∣∣∑n
i=1 θi − cn

∣∣∣) → 0 as n → ∞. Fix any ε > 0.

P
(
θ∗n ≥ 1

2

∣∣∣ n∑
i=1

θi − cn

∣∣∣)
= P

( θ∗n
σ
√
n
≥ 1

2

∣∣∣∑n
i=1(θi − µ)

σ
√
n

− cn − µn

σ
√
n

∣∣∣)
= P

( θ∗n
σ
√
n
≥ 1

2

∣∣∣∑n
i=1(θi − µ)

σ
√
n

− cn − µn

σ
√
n

∣∣∣, 1

2

∣∣∣∑n
i=1(θi − µ)

σ
√
n

− cn − µn

σ
√
n

∣∣∣ > ε

2

)
+ P

( θ∗n
σ
√
n
≥ 1

2

∣∣∣∑n
i=1(θi − µ)

σ
√
n

− cn − µn

σ
√
n

∣∣∣, 1

2

∣∣∣∑n
i=1(θi − µ)

σ
√
n

− cn − µn

σ
√
n

∣∣∣ ≤ ε

2

)
≤ P

( θ∗n
σ
√
n
>

ε

2

)
+ P

(∣∣∣∑n
i=1(θi − µ)

σ
√
n

− cn − µn

σ
√
n

∣∣∣ ≤ ε
)

= P
( θ∗n
σ
√
n
>

ε

2

)
+ P

(∑n
i=1(θi − µ)

σ
√
n

≤ cn − µn

σ
√
n

+ ε
)
− P

(∑n
i=1(θi − µ)

σ
√
n

<
cn − µn

σ
√
n

− ε
)

≡ P
( θ∗n
σ
√
n
>

ε

2

)
+ Fn

(cn − µn

σ
√
n

+ ε
)
− Fn

(cn − µn

σ
√
n

− ε
)
,

where Fn is the cdf of
∑n

i=1(θi−µ)

σ
√
n

. Now, θ∗n
σ
√
n

p→ 0 by Rob (1982, pp. 211-212, proof of

Lemma 1 and 2) and
∑n

i=1(θi−µ)

σ
√
n

d→ N(0, 1) by the central limit theorem. By van der Vaart
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(1998, p. 12, Lemma 2.11), if a sequence of random variables Xn with cdf Gn converges
in distribution to a random variable X with cdf G and G is continuous, then Gn → G
uniformly. In particular, for any δ > 0 there exists N(δ) such that for all n > N(δ) and
x ∈ R, |Gn(x)−G(x)| < δ.

Let Φ denote the cdf of a standard normal, which is continuous. Then Fn → Φ uniformly
and for any x ∈ R and n > N(δ),∣∣∣(Fn(x+ ε)− Fn(x− ε)

)
−
(
Φ(x+ ε)− Φ(x− ε)

)∣∣∣ = ∣∣∣(Fn(x+ ε)− Φ(x+ ε)
)
+
(
Φ(x− ε)− Fn(x− ε)

)∣∣∣
≤ |Fn(x+ ε)− Φ(x+ ε)|+ |Fn(x)− Φ(x)|
< 2δ.

Since maxxΦ(x+ ε)− Φ(x− ε) = Φ(ε)− Φ(−ε),

lim sup
n→∞

P
(
θ∗n ≥ 1

2

∣∣∣ n∑
i=1

θi − cn

∣∣∣) ≤ Φ(ε)− Φ(−ε),

and since Φ(ε)− Φ(−ε) → 0 as ε → 0, the result follows. ■

Proposition 6. Given any sequence of finite environments (θn, zn, En)n∈N generated
by i.i.d. draws from some F ∈ ∆(Θ0 × Z0), the probability that there is at least one
pivotal player in En given θn goes to zero as n goes to infinity.

Proof. Let En(Y ′) ∈ EB be the environment En ∈ EF with Y ′ ⊆ Y substituted for Y . For
any i ∈ I and a, b ∈ Y with a < b, let θi[a, b] ≡ θi(b) − θi(a) and cn[a, b] ≡ cn(b) − cn(a).
Note that (θi[a, b])i∈N is i.i.d. and E[(θi[a, b])2] < ∞. By Lemma 2,

P(∃ pivotal player in En({a, b}) given θn)

≤ P
(
∃k :

∑
j ̸=k, j≤n

θj [a, b] < cn[a, b] and

n∑
i=1

θi[a, b] ≥ cn[a, b]
)
→ 0 as n → ∞.

Let Y = {{a, b} : a, b ∈ Y and a < b}. Note that |Y| = K(K + 1)/2. Then

P (∃ pivotal player in En given θn) ≤ P
(
∃Y ′ ∈ Y : ∃ pivotal player in En(Y ′) given θn

)
≤

∑
Y ′∈Y

P
(
∃ pivotal player in En(Y ′) given θn

)
→ 0 as n → ∞.

■

Theorem 5. Given any sequence of finite environments (θn, zn, En)n∈N generated
by i.i.d. draws from some F ∈ ∆(Θ0 × Z0), any sequence of cost-sharing pivotal
mechanisms ((αn, τn))n∈N is asymptotically ex-post budget-balanced.
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Proof. Part I. The probability that no agent is pivotal goes to one by Proposition 6, and
the CSP is EPBB when no agent is pivotal.

Part II. Let Sn(θn) ≡
∑n

i=1 τ
n
i (θ

n)− cn(αn(θn)) be the budget surplus of the CSP mecha-
nism (αn, τn). Let Πn ⊂ Θn be the event in which there exists a pivotal player in En given
θn.

Case 1. Suppose cn(K)
n ↛ ∞ as n → ∞. Then

1

n
E
(∣∣Sn(θn)

∣∣) =
1

n
E
(∣∣Sn(θn)

∣∣ | Πn
)
· P(Πn) +

1

n
E
(∣∣Sn(θn)

∣∣ | ¬Πn
)
· P(¬Πn)

≤ cn(K)

n
· P(Πn)

→ 0 as n → ∞,

where the inequality follows by Proposition 5 and the last line follows by Proposition 6.

Case 2. Suppose cn(K)
n → ∞ as n → ∞. Let k∗ be the smallest k such that cn(k)

n → ∞
as n → ∞. Since cn(y) is non-decreasing in y for all n, cn(k)

n → ∞ for any k ≥ k∗. Let

θ̄n(k) ≡
∑n

i=1 θi(k), µ(k) = E(θi(k)), and σ2(k) = Var(θi(k)). If θ̄
n(k) < cn(k) for all k ≥ k̂,

then the total fair share payment
∑n

i=1 ci(α(0, θ−i)) can be no more than c(k̂ − 1), since

any k ≥ k̂ is never an efficient decision without i for any i. Hence, the total CSP payment
can be no less than zero and no more than c(α(θ)) + c(k̂ − 1) by Proposition 5, and the
distance from EPBB is bounded by c(k̂ − 1). We may write

1

n
E
(∣∣Sn(θn)

∣∣) =
1

n
E
(∣∣Sn(θn)

∣∣ | ∀k ≥ k∗, θ̄n(k) < cn(k)
)
P
(
∀k ≥ k∗, θ̄n(k) < cn(k)

)
+

1

n
E
(∣∣Sn(θn)

∣∣ | ∃k ≥ k∗, θ̄n(k) ≥ cn(k)
)
P
(
∃k ≥ k∗, θ̄n(k) ≥ cn(k)

)
.

Now,

1

n
E
(∣∣Sn(θn)

∣∣ | ∀k ≥ k∗, θ̄n(k) < cn(k)
)

=
1

n
E
(∣∣Sn(θn)

∣∣ | ∀k ≥ k∗, θ̄n(k) < cn(k), Πn
)
· P(Πn | ∀k ≥ k∗, θ̄n(k) < cn(k))

+
1

n
E
(∣∣Sn(θn)

∣∣ | ∀k ≥ k∗, θ̄n(k) < cn(k), ¬Πn
)
· P(¬Πn | ∀k ≥ k∗, θ̄n(k) < cn(k))

≤ cn(k∗ − 1)

n
· P(Πn)

P(∀k ≥ k∗, θ̄n(k) < cn(k))

→ 0 as n → ∞,

where the inequality follows by Proposition 5 and the last line follows by Proposition 6 and

P
(
∃k ≥ k∗, θ̄n(k) ≥ cn(k)

)
≤

K∑
k=k∗

P
( 1

n

n∑
i=1

θi(k) ≥
cn(k)

n

)
→ 0,
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since for all k ≥ k∗, 1
n

∑n
i=1 θi(k)

p→ µ(k) by the law of large numbers and cn(k)
n → ∞ by

assumption. Moreover,

1

n
E
(∣∣Sn(θn)

∣∣ | ∃k ≥ k∗, θ̄n(k) ≥ cn(k)
)
P
(
∃k ≥ k∗, θ̄n(k) ≥ cn(k)

)
=

1

n
E
(∣∣Sn(θn)

∣∣ | θ̄n(k∗) ≥ cn(k∗), θ̄n(k∗ + 1) < cn(k∗ + 1), . . . , θ̄n(K) < cn(K)
)

× P
(
θ̄n(k∗) ≥ cn(k∗), θ̄n(k∗ + 1) < cn(k∗ + 1), . . . , θ̄n(K) < cn(K)

)
+

1

n
E
(∣∣Sn(θn)

∣∣ | θ̄n(k∗ + 1) ≥ cn(k∗ + 1), θ̄n(k∗ + 2) < cn(k∗ + 2), . . . , θ̄n(K) < cn(K)
)

× P
(
θ̄n(k∗ + 1) ≥ cn(k∗ + 1), θ̄n(k∗ + 2) < cn(k∗ + 2), . . . , θ̄n(K) < cn(K)

)
+ . . .

+
1

n
E
(∣∣Sn(θn)

∣∣ | θ̄n(K) ≥ cn(K)
)
× P

(
θ̄n(K) ≥ cn(K)

)
≤ cn(k∗)

n
P
(
θ̄n(k∗) ≥ cn(k∗)

)
+

cn(k∗ + 1)

n
P
(
θ̄n(k∗ + 1) ≥ cn(k∗ + 1)

)
+ . . .+

cn(K)

n
P
(
θ̄n(K) ≥ cn(K)

)
.

For any k = k∗, . . . ,K, there exists N ∈ N such that for all n > N , cn(k)
n > µ(k) and

cn(k)

n
· P

(
θ̄n(k) ≥ cn(k)

)
≤ cn(k)

n
· P

(∣∣∣θ̄n(k)− nµ(k)
∣∣∣ ≥ ∣∣∣cn(k)− nµ(k)

∣∣∣)
≤ cn(k)

n
· nσ2(k)(

cn(k)− nµ(k)
)2

=
cn(k)

n
· σ2(k)

n
( cn(k)

n − µ(k)
)2

→ 0 as n → ∞,

where the second inequality follows by Chebyshev’s inequality. ■

Theorem 6. Consider any sequence of finite environments (θn, zn, En)n∈N generated
by i.i.d. draws from some F ∈ ∆(Θ0 × Z0). Let (αn)n∈N be a sequence of efficient
and monotone decision rules and (τn)n∈N be a sequence of CSP transfer rules. A
sequence of efficient and monotone mechanisms ((αn, τ̂n))n∈N satisfies AEPBB and
strategy-proofness and cost-sharing universal participation for each n if and only if,
for all i,

τ̂ni (θ
n) = τni (θ) + hn

i (θ
n
−i),

for some sequence of functions hn
i : Θ−i → R such that

1. hn
i (θ

n
−i) ≤ 0 for all θn−i ∈ Θn

−i, i, and n,

2. limn→∞ P(hn
i (θ

n
−i) = 0 for all i) = 1, and

3. limn→∞
1
n

∑n
i=1 E

[
hn
i (θ

n
−i)

]
= 0.
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The same holds replacing cost-sharing universal participation with the fair pricing
principle per unit. Under Assumption 1, the same holds replacing the fair pricing
principle per unit with the fair pricing principle.

Proof. Part I. WTS (αn, τ̂n) satisfies strategy-proofness and CS-UP (the FPP per unit,
and the FPP under Assumption 1) for each n if and only if (1). This follows immediately
from Holmström (1979) and Theorem 1 (Theorem 3).

Part II. WTS (αn, τ̂n) satisfies strategy-proofness, CS-UP (the FPP per unit, and the FPP
under Assumption 1) for each n, and AEPBB if and only if (1), (2), and (3).

P
( n∑

i=1

τ̂ni (θ
n)− cn(αn(θn)) = 0

)
= P

( n∑
i=1

τ̂ni (θ
n)− cn(αn(θn) = 0 | ¬∃ pivotal player in En given θn

)
P(¬∃ pivotal player in En given θn)

+ P
( n∑

i=1

τ̂ni (θ
n)− cn(αn(θn) = 0 | ∃ pivotal player in En given θn

)
P(∃ pivotal player in En given θn)

≡ P(EPBB | no one pivotal)P(no one pivotal) + P(EPBB | someone pivotal)P(someone pivotal).

Hence,

lim
n→∞

P(EPBB) = lim
n→∞

P(EPBB | no one pivotal) lim
n→∞

P(no one pivotal)

+ lim
n→∞

P(EPBB | someone pivotal) lim
n→∞

P(someone pivotal)

= lim
n→∞

P(EPBB | no one pivotal)

= lim
n→∞

P
( n∑

i=1

hni (θ
n
−i) = 0 | no one pivotal

)
= lim

n→∞
P(hni (θn−i) = 0 ∀i | no one pivotal)

= lim
n→∞

P(hni (θn−i) = 0 ∀i),

where the second line follows since limn→∞ P(someone pivotal) = 0 (proof of Theorem 5
Part I), the third line follows since a CSP is EPBB when no one is pivotal, the fourth line
follows from Part I, and the last line follows since

lim
n→∞

P(hni (θn−i) = 0 ∀i) = lim
n→∞

P(hni (θn−i) = 0 ∀i | no one pivotal) lim
n→∞

P(no one pivotal)

+ lim
n→∞

P(hni (θn−i) = 0 ∀i | someone pivotal) lim
n→∞

P(someone pivotal)

= lim
n→∞

P(hni (θn−i) = 0 ∀i | no one pivotal).
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Finally,

lim
n→∞

1

n
E

[∣∣∣∣ n∑
i=1

τni (θ
n) + hni (θ

n
−i)− cn(αn(θn))

∣∣∣∣
]
= 0

⇐⇒ lim
n→∞

1

n
E

[
n∑

i=1

τni (θ
n)− cn(αn(θn))

]
+ lim

n→∞

1

n

n∑
i=1

E
[
hni (θ

n
−i)

]
= 0

where the second line follows since limx→∞ f(x) = 0 ⇐⇒ limx→∞|f(x)| = 046 and the
desired result follows by Theorem 5. ■

46Notice |f(x)− 0| < ε ⇐⇒ ||f(x)| − 0| < ε.
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